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EFFECTIVENESS OF CPPI STRATEGIES UNDER DISCRETE–TIME
TRADING

Abstract. The paper analyzes the effectiveness of the constant proportion portfolio
insurance (CPPI) method under trading restrictions. If the CPPI method is applied in
continuous time, the CPPI strategies provide a value above a floor level unless the price
dynamic of the risky asset permits jumps. The risk of violating the floor protection
is called gap risk. In practice, it is caused by liquidity constraints and price jumps.
Both can be modelled in a setup where the price dynamic of the risky asset is described
by a continuous–time stochastic process but trading is restricted to discrete time. We
propose a discrete–time version of the continuous–time CPPI strategies which satisfies
three conditions. The resulting strategies are self–financing, the asset exposure is non–
negative and the value process converges. We determine risk measures such as the
shortfall probability and the expected shortfall and discuss criteria which ensure that
the gap risk does not increase to a level which contradicts the original intention of
portfolio insurance.

1. Introduction

Financial strategies which are designed to limit downside risk and at the same time to
profit from rising markets are summarized in the class of portfolio insurance strategies.
Among others, Grossman and Villa (1989) and Basak (2002) define a portfolio insurance
trading strategy as a strategy which guarantees a minimum level of wealth at a specified
time horizon, but also participates in the potential gains of a reference portfolio. The
most prominent examples of dynamic versions are the constant proportion portfolio in-
surance (CPPI) strategies and option–based portfolio insurance (OBPI) strategies with
synthetic puts.1 Here, synthetic is understood in the sense of a trading strategy in basic
(traded) assets which creates the put. In a complete financial market model, there exists a
perfect hedge, i.e. a self–financing and duplicating strategy. In contrast, the introduction
of market incompleteness impedes the concept of perfect hedging.

In this paper, the incompleteness is caused by trading restrictions. The price process
of the benchmark index, i.e. the risky asset, is driven by a continuous–time process, while
trading is restricted to discrete time. Therefore, the effectiveness of the OBPI approach is
given by the effectiveness of a discrete–time option hedge. The error of time–discretizing
a continuous–time hedging strategy for a put (or call) is extensively studied in the litera-
ture. Discretely adjusted option hedges, first analyzed in Boyle and Emanuel (1980), are
also treated in Bertsimas, Kogan, and Lo (1998) and more recently in Mahayni (2003),

1Option–based portfolio insurance (OBPI) with synthetic puts is introduced in Leland and Rubinstein
(1976), constant proportion portfolio insurance (CPPI) in Black and Jones (1987). For the basic procedure
of the CPPI see also Merton (1971).

1



Talay and Zheng (2003) and Hayashi and Mykland (2005).2 While the implications of
discrete–time option hedges for portfolio protection are interesting in themselves, the main
focus of this paper is on the effects of time–discretizing the CPPI strategies which has,
to our knowledge, not been done yet. However, we keep in mind that the OBPI is one
alternative to the CPPI.

The optimality of an investment strategy depends on the risk profile of the investor.
In order to determine the optimal rule, one has to solve for the strategy which maxi-
mizes the expected utility. Thus, portfolio insurers can be modelled by utility maximizers
where the maximization problem is given under the additional constraint that the value
of the strategy is above a specified wealth level. Without postulating completeness, we
refer to the works of Cox and Huang (1989), Brennan and Schwartz (1989), Grossman
and Villa (1989), Grossman and Zhou (1993, 1996), Basak (1995), Cvitanic and Karatzas
(1995, 1999), Browne (1999), Tepla (2000, 2001) and El Karoui, Jeanblanc, and Lacoste
(2005). Mostly, the solution of the maximization problem is given by the unconstrained
problem including a put option. Obviously, this is in the spirit of the OPBI method. The
introduction of various sources of market incompleteness in terms of stochastic volatility
and trading restrictions makes the determination of an optimal investment rule under
minimum wealth constraints quite difficult if not impossible. For example, if the payoff
of a put (or call) option is not attainable, the OBPI approach is not a viable method
in the above setup.3 Another problem is posed by model risk. This is generated by the
possible inconsistency between the unknown true model and the model the risk man-
ager relies on in order to determine the hedging strategy. That is, one has to use some
(educated) assumptions about the data-generating processes. However, strategies which
are based on an optimality criterion with respect to one particular model, fail to be op-
timal if the ”true” asset price dynamics deviate from the assumed ones. Summing up,
one alternative to the maximization approach, either based on utility or other optimality
criteria, is given by a more general analysis of robustness properties of a stylized strategy.4

For the reasons given above, we follow an approach where the analysis is already based on
stylized portfolio strategies, i.e. we take the CPPI rule as given. Because of its simplicity
and the possibility to customize it to the preferences of an investor, the CPPI has become
very popular with practitioners.

In Black and Perold (1992), it is shown that in a complete market, the CPPI can be char-
acterized as expected utility maximizing when the utility function is piecewise HARA and
the guaranteed level is growing with the riskless interest rate. Obviously, this argument
loses it validity if an additional incompleteness is introduced by trading restrictions. The
properties of continuous–time CPPI strategies are studied extensively in the literature,
c.f. Bookstaber and Langsam (2000) or Black and Perold (1992). A comparison of OBPI

2Transaction costs can naturally explain the reason for discrete–time hedging. The implication of
transaction costs, conducted by Leland (1985), is studied in Bensaid, Lesne, and Scheinkman (1992),
Boyle and Vorst (1992), Avellaneda and Parás (1994), Grannan and Swindle (1996) and Toft (1996).

3Hedging strategies in incomplete markets depend on some dynamic risk measure that has to be
minimized. For a discussion, see e.g. Schweizer (2001).

4With respect to the robustness of option hedges we refer the reader to Avellaneda, Levy, and Parás
(1995), Lyons (1995), Bergman, Grundy, and Wiener (1996), El Karoui, Jeanblanc-Picqué, and Shreve
(1998), Hobson (1998), Dudenhausen, Schlögl, and Schlögl (1998) and Mahayni (2003).
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and CPPI (in continuous time) is given in Bertrand and Prigent (2002a). An empirical
investigation of both methods can, for example, be found in Do (2002) who simulates
the performance of these strategies using Australian data. The literature also deals with
the effects of jump processes, stochastic volatility models and extreme value approaches
on the CPPI method, c.f. Bertrand and Prigent (2002b), Bertrand and Prigent (2003).
In contrast to this, we consider the risk resulting from trading restrictions. We propose
a discrete–time version of a simple CPPI strategy which satisfies three conditions. The
strategy is self–financing, the asset exposure is non–negative and the value process con-
verges. Assuming that the underlying price process is given by a geometric Brownian
motion, trading restrictions in the sense of discrete–time trading are sufficient to model
the possibility of a floor violation. The advantage of a model setup along the lines of
Black and Scholes (1973) is that risk measures, such as the shortfall probability and the
expected shortfall which are implied by the discrete–time CPPI method can be given in
closed form. It is shown that the same holds for the price of the gap risk. Of course, this
is only possible because of the proportional structure of the CPPI strategies. A CPPI
investor specifies two parameters, a constant multiplier and the floor (or guarantee). Then
the amount which is invested in a risky asset is determined by the product of the multiplier
and the excess of the portfolio value over the floor. The remaining part, i.e. the difference
of the portfolio value and the asset exposure is invested in a riskless asset. This implies
that the strategy is self–financing. If the price process of the risky asset does not permit
jumps, the continuous–time application of the CPPI ensures that the portfolio value does
not fall below the floor. The strategy outperforms the prescribed floor unless there is a
sudden drop in market prices such that the investor is not able to rebalance his portfolio
adequately. With respect to trading restrictions, the effectiveness of the discrete–time
strategies should improve with an increasing trading frequency which, of course, is also
true for a discrete–time option hedge. However, a synthetic put can only be represented
by a stochastic multiplier. Intuitively, this explains why the risk measures can be given
in closed form in the case of a discrete–time CPPI but not in the case of a discrete–time
option based strategy.

In our setup, once the risk measures are determined, the gap risk can be priced eas-
ily. However, the main focus is not the pricing. Instead, the relevant risk measures are
used to discuss criteria which must be satisfied such that the CPPI strategy is still ef-
fective if applied in discrete time.5 For example, it turns out that for a small number of
rehedges, the shortfall probability, i.e. the probability that the strategy falls below the
floor at the terminal date, may as well first increase in the trading frequency before it
decreases. However, after a critical number of rehedges, the shortfall probability is always
decreasing in the number of rehedges. The change in monotonicity can be interpreted in
terms of a minimal number of rehedges which is necessary such that a portfolio protection
can be achieved by applying the CPPI technique in discrete time. Obviously, the critical
number of rehedges depends on the model parameters, the drift and the volatility, and the
strategy parameters, in particular the multiplier. The same is true for the risk measures.
We discuss criteria which ensure that the CPPI method is effective in a discrete–time

5It is worth mentioning that while arbitrage free pricing is based on the expectation under the mar-
tingale measure, the risk measures must be determined with respect to the real world measure.
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setup. If the volatility is known, it is, for example, possible to specify the strategy pa-
rameters of a CPPI, i.e. the multiplier and the floor, such that the shortfall probability
is bounded above by a confidence level. The effects of model and strategy parameters on
the risk measures are illustrated by examples.

The outline of the paper is as follows. Sec. 2 gives the model setup, motivates the CPPI
method and reviews the structure and the properties of continuous–time CPPI strate-
gies. A discrete–time version of a CPPI strategy where the asset exposure is restricted
to be non–negative is defined in Sec. 3. The properties of the discrete–time version are
derived in analogy to the continuous–time version. The assumption that the asset price
increments are independent and identically distributed yields a closed–form solution for
the shortfall probability and the expected shortfall. The calculations are given in Sec.
4 which also includes a sensitivity analysis of the risk measures with respect to model
and strategy parameters. Besides, it is shown that the value process of the discrete–time
version converges to the value process of the continuous–time strategy in distribution if
the trading restrictions vanish. Sec. 5 illustrates the results and discusses criteria which
ensure that the discrete–time strategy is effective, i.e. the portfolio protection is still valid
in discrete time. Sec. 6 concludes the paper.

2. Model Setup

All stochastic processes are defined on a stochastic basis (Ω,F , (Ft)t∈[0,T ∗], P ) which sat-
isfies the usual hypotheses.

We consider two investment possibilities: a risky asset S and a riskless bond B which
grows with constant interest rate r, i.e. dBt = Btr dt where B0 = b. The evolution of the
risky asset S, a stock or benchmark index, is given by a geometric Brownian motion, i.e.

dSt = St (µ dt + σ dWt) , S0 = s, (1)

where W = (Wt)0≤t≤T denotes a standard Brownian motion with respect to the real
world measure P . µ and σ are constants and we assume that µ > r ≥ 0 and σ >

0. A continuous–time investment strategy or saving plan for the interval [0, T ] can be
represented by a predictable process (αt)0≤t≤T . αt denotes the fraction of the portfolio
value at time t which is invested in the risky asset S. If there are no additional borrowing
restrictions, we can, w.l.o.g., restrict ourselves to strategies which are self–financing, i.e.
strategies where money is neither injected nor withdrawn during the trading period ]0, T [.
Thus, the amount which is invested at date t in the riskless bond B is given in terms of
the fraction 1−αt. V = (Vt)0≤t≤T denotes the portfolio value process which is associated
with the strategy α, i.e. Vt is the solution of

dVt(α) = Vt

(
αt

dSt

St

+ (1 − αt)
dBt

Bt

)
, where V0 = x. (2)

Notice that there are alternative possibilities for portfolio insurance. Let T denote the
terminal trading date. For example, one might think of T as the retirement day. The
minimal wealth which must be obtained is denoted by G. The guaranteed amount is
assumed to be less than the terminal value of a pure bond investment, i.e. we assume
G < erT V0. Besides a pure bond investment, a trivial possibility is given by a static
trading strategy where at the initial time t = 0 the present value of the guarantee, i.e.
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Ge−rT is invested in the bond B and the remaining part, i.e. the surplus V0 − e−rT G, is

invested in the risky asset S. Thus, although αt = (V0−e−rT G)
Vt

St

S0
is stochastic, the strategy

is static in the sense that there are no rebalancing decisions involved during the interval
]0, T ]. Abstracting from stochastic interest rates, the above strategy honors the guarantee
G independent of the stochastic process generating the asset prices. Another example of
portfolio insurance is given by a stop–loss–strategy which is represented by a portfolio
fraction αt = 1{Vt>e−r(T−t)G}. Here, everything is invested in the asset until the cush-

ion (or surplus) Vt − e−r(T−t)G is exhausted. This means that the strategy is effective
with respect to the guarantee if continuous–time monitoring (trading) is possible and the
asset price process does not permit jumps. Together, the above strategies can be used
to explain the basic idea of the constant proportion portfolio insurance. A combination
of continuous–time monitoring and keeping the cushion under control yields the CPPI
approach.

However, in a complete market there is a second possibility, the option based portfo-
lio insurance approach. The completeness implies that there is a self–financing and du-
plicating strategy in S and B for any claim with payoff h(ST ) at T . Notice that for

h(ST ) = λ
(
ST +

[
G
λ
− ST

]+
)

= G + λ
[
ST − G

λ

]+
and λ > 0 it holds h(ST ) ≥ G. Buy-

ing λ assets and λ put–options with strike G
λ

enables a portfolio insurance, too.6 If the
associated options are not traded, they must be synthesized by a hedging strategy in S

and B. If the concept of perfect hedging is impeded by market incompleteness, the OBPI
and the CPPI can both violate the purpose of portfolio insurance. In terms of model
risk, i.e. the problem that one does not know which process can describe the true data
generating process adequately, the OBPI approach causes more problems than the CPPI
technique. The composition of the CPPI strategy is model independent. In contrast to
this, it is necessary to incorporate a volatility guess in order to implement the OBPI
approach with synthetic options. Thus, there is an additional error introduced by using
the wrong hedging model.

In the following, we concentrate on the CPPI approach. It is worth mentioning that
even without an utility based justification, the CPPI is an important strategy in prac-
tice.7 We fix the notation and review the basic form and properties of continuous–time
CPPI strategies. Recall that the basic idea of the CPPI approach is to invest the amount
of portfolio value which is above the present value of the guarantee in the risky asset
S. Normally, the symbol F is used to denote the present value of the guarantee G, i.e.
Ft := exp {−r(T − t)}G. This is equivalent to

dFt = Ftr dt with F0 = exp {−rT}G.

The surplus is called cushion C, i.e. Ct := Vt − Ft. If the cushion is monitored in
continuous time, it is even possible to invest a multiple of the cushion in the risky asset.

6Or buying λ call options with strike G
λ

and a riskless investment of Ge−rT .
7Besides the importance of CPPI strategies in the context of hedge funds, the CPPI technique has

recently been extended to the credit derivatives market, c.f. Fletcher (2005). ABN Amro created the
first credit CPPI product in April 2004. It is called Rente Booster.
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Let m denote the multiplier, then the fraction α of a CPPI strategy is given by8

αt :=
mCt

Vt

.

Notice that there are various extensions to the CPPI. For example, besides borrowing
constraints it is also possible to permit only a maximal fraction of wealth to be invested
in the risky asset. Furthermore, one might think of a floor adjustment which allows to
protect the gains in the case of a favorable asset performance. However, all these exten-
sions prohibit closed–form solutions. For this reason, we call a continuous–time CPPI
strategy which satisfies the above form simple. Notice that a simple CPPI–strategy is
given in terms of the guarantee G and the multiplier m ≥ 0. Normally, a CPPI even
implies that m ≥ 2. In addition to the protection feature this ensures that the value of
the CPPI strategy is convex in the asset price, at least in a continuous–time setup with
continuous asset paths. Throughout the paper, the guarantee is given exogenously, i.e. it
is the minimal value of wealth which is needed at T . In contrast to the OBPI approach,
the CPPI includes an additional degree of freedom which is introduced by the multiplier
m. While CPPI strategies are protective with respect to the guarantee for all m ≥ 0, this
is not true if trading is restricted to discrete time. Heuristically, this is easily explained
by the static case where a protection is only possible for m ≤ 1.

For the sake of completeness, we review some basic properties of the continuous–time
CPPI technique. First, consider the cushion process (Ct)0≤t≤T .

Lemma 2.1. If the asset price dynamic is lognormal, i.e. if it satisfies Equation (1), the
cushion process (Ct)0≤t≤T of a simple CPPI is lognormal, too. In particular, it holds

dCt = Ct ((r + m(µ − r) dt + σm dWt) .

Proof: Notice that Ct := Vt − Ft implies

dCt = d (Vt − Ft)

= Vt

(
mCt

Vt

dSt

St

+

(
1 −

mCt

Vt

)
dBt

Bt

)
− Ft

dBt

Bt

= Ct

(
m

dSt

St

− (m − 1)r dt

)
.

The rest of the proof follows with Equation (1).

Proposition 2.2. The t–value of the a simple CPPI with parameter m and G is

Vt = Ge−r(T−t) +
V0 − Ge−rT

Sm
0

exp

{(
r − m

(
r −

1

2
σ2

)
− m2σ2

2

)
t

}
Sm

t . (3)

Proof: Notice that Equation (3) can also be represented as follows

Vt = Ft +
V0 − F0

Sm
0

exp

{(
r − m

(
r −

1

2
σ2

)
− m2σ2

2

)
t

}
Sm

t .

8For simplicity, we abstract from borrowing constraints which can be modelled by αt =
min{m(Vt−Ft),pVt}

Vt

with p ≥ 0.
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The proof of this equation is well known, c.f. for example Bertrand and Prigent (2002a).
Together with

St = S0e
(µ− 1

2
σ2)t+σWt

it follows that

Vt − Ft = (V0 − F0)e
(r+m(µ−r)− 1

2
m2σ2)t+σmWt (4)

which matches the result of Lemma 2.1.

Equation (3) illustrates the basic property of a simple CPPI. The t–value of the strategy
consists of the present value of the guarantee G, i.e. the floor at t, and a non–negative

part which is proportional to
(

St

S0

)m

. Thus, the value process of a simple CPPI strategy is

path independent.9 The payoff above the guarantee is linear for m = 1 and it is convex for
m ≥ 2. In financial terms, the payoff of a CPPI strategy with m ≥ 2 can be interpreted as
a power claim. The portfolio protection is efficient with probability one, i.e. the terminal
value of the strategy is higher than the guarantee with probability one.

The expected value and the variance of a simple CPPI are easily calculated as follows.

Lemma 2.3.

E [Vt] = Ft + (V0 − F0) exp {(r + m(µ − r)) t}

V ar [Vt] = (V0 − F0)
2 exp {2 (r + m(µ − r)) t}

(
exp

{
m2σ2t

}
− 1

)
.

Proof: With Equation (4) it follows

E [ln (Vt − Ft)] = ln (V0 − F0) +

(
r + m(µ − r) −

1

2
m2σ2

)
t

V ar [ln (Vt − Ft)] = σ2m2t.

Notice that for X ∼ N (µX , σX) we have

E
[
eX

]
= eµX+ 1

2
σ2

X , V ar
[
eX

]
= e2µXeσ2

X

(
eσ2

X − 1
)

.

It is worth mentioning that the expected terminal value of a simple CPPI strategy is in-
dependent of the volatility σ. In contrast, the standard deviation increases exponentially
in the volatility of the asset S, c.f. Figure 1 and 2. Intuitively, this property explains
that the effectiveness of a CPPI strategy with respect to various sources of market incom-
pleteness does not only depend on the asset price drift but even more importantly on the
volatility of the underlying asset. In particular, this is the case for a rather high value of
the multiplier.

9Notice that this is not true if one deviates from the concept of a simple CPPI.
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Expectation and Standard Deviation of a simple CPPI
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Figure 1. Expected final
value of a simple CPPI with
V0 = 1000, G = 800, T = 1
and varying m for σ = 0.1,
µ = 0.1 and r = 0.05.
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Figure 2. Standard devia-
tion of the final value of a sim-
ple CPPI with V0 = 1000, G =
800, T = 1 and varying σ for
µ = 0.1, r = 0.05 and m = 2
(m = 4, m = 8 respectively).

3. Trading restrictions

We assume now that trading is restricted to a discrete set of dates and define a discrete–
time version of the simple CPPI strategy satisfying the following three conditions. Firstly,
the value process of the discrete–time version converges in distribution to the value pro-
cess of the continuous–time simple CPPI strategy. Secondly, the discrete–time version is a
self–financing strategy. This means, that after the initial investment V0 = x, there are no
in– or outflow of funds. Thirdly, the strategy does not allow for a negative asset exposure.
Notice that the first condition implies that the cushion process of the discrete–time ver-
sion converges to a lognormal process in distribution. However, the cushion process with
respect to a discrete–time set of trading dates may also be negative. Therefore, to avoid
a negative asset exposure, this must be captured by the definition of the discrete–time
version.

Let τn denote a sequence of equidistant refinements of the interval [0, T ], i.e.

τn =
{
tn0 = 0 < tn1 < · · · < tnn−1 < tnn = T

}
,

where tnk+1−tnk = T
n

for k = 0, · · · , n−1. To simplify the notation, we drop the superscript
n and denote the set of trading dates with τ instead of τn. The restriction that trading
is only possible immediately after tk ∈ τ implies that the number of shares held in the
risky asset is constant on the intervals ]ti, ti+1] for i = 0, . . . , n−1. However, the fractions
of wealth which are invested in the assets change as assets prices fluctuate. Thus, it is
necessary to consider the number of shares held in the risky asset η and the number of
bonds β, i.e. the tupel φ = (η, β). With respect to the continuous–time simple CPPI
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strategies, it holds

ηt =
αtVt

St

=
mCt

St

,

βt =
(1 − αt)Vt

Bt

=
Vt − mCt

Bt

.

The following argumentation illustrates that a time–discretized strategy φτ which is de-
fined by

φτ
t := φtk for t ∈]tk, tk+1], k = 0, . . . , n − 1

is in general not self–financing. The value process V τ := V (φ; τ) which is associated with
the discrete–time version of φ, i.e. with φτ , is defined by V τ

0 := V0 and

Vt(φ; τ) := ηtkSt + βtkBt for t ∈]tk, tk+1]

= Vt(φ) − (ηt − ηtk)St − (βt − βtk)Bt for t ∈]tk, tk+1],

where
Vt(φ) := ηtSt + βtBt.

If φ is self–financing, this is not necessarily true for φτ . Notice that φτ is self–financing iff

ηtkStk+1
+ βtkBtk+1

= ηtk+1
Stk+1

+ βtk+1
Btk+1

for all k = 0, . . . , n − 1

⇐⇒ Vtk+1
(φ; τ) = Vtk+1

(φ) for all k = 0, . . . , n − 1.

Obviously, this is only true in the limit, i.e. for n → ∞. It is worth mentioning that it
is not even clear whether the above time–discretized version is mean–self–financing with
respect to the real world measure, c.f. for example Mahayni (2003). In order to specify a
meaningful discrete–time version of a simple CPPI strategy, it is necessary to admit only
self–financing strategies. This is equal to the condition that

βτ
t =

1

Btk

(
V τ

tk
− ητ

t Stk

)
for t ∈]tk, tk+1]. (5)

Finally, recall that constant proportion portfolio insurance means that the fraction of
wealth α which is invested in the risky asset is given proportionally to the difference of
the portfolio value and the floor, i.e. the cushion. Let Cτ denote the discrete–time version
of the cushion process C, then

Cτ
t := V τ

t − Ft.

In addition, we do not allow for short positions in the risky asset, i.e. the asset exposure is
bounded below by zero. Thus, it is necessary to consider the positive part of the cushion.
The above reasoning gives the following definition.

Definition 3.1 (Discrete–Time CPPI). A strategy φτ = (ητ , βτ ) where for t ∈]tk, tk+1]
and k = 0, . . . , n − 1

ητ
t := max

{
m Cτ

tk

Stk

, 0

}

βτ
t :=

1

Btk

(
V τ

tk
− ητ

t Stk

)

9



is called simple discrete–time CPPI.

Proposition 3.2 (Discrete–time cushion process). Define

ts := min
{
tk ∈ τ |V τ

tk
(α) − Ftk ≤ 0

}

with ts = ∞ if the minimum is not attained. It holds

V τ
tk+1

− Ftk+1
= er(tk+1−min{ts,tk+1})

(
V τ

t0
− Ft0

) min{s,k+1}∏

i=1

(
m

Sti

Sti−1

− (m − 1)er T
n

)
.

Proof: Notice that

V τ
tk+1

= max

{
mCτ

tk

Stk

, 0

}
Stk+1

+

(
V τ

tk
− max

{
mCτ

tk

Stk

, 0

}
Stk

)
Btk+1

Btk

=





Ftk

Btk+1

Btk

+
(
V τ

tk
− Ftk

) (
m

Stk+1

Stk

− (m − 1)
Btk+1

Btk

)
for V τ

tk
− Ftk > 0

V τ
tk

Btk+1

Btk

for V τ
tk
− Ftk ≤ 0.

Together with Ftk

Btk+1

Btk

= Ftk+1
it follows

V τ
tk+1

− Ftk+1
=

{ (
V τ

tk
− Ftk

) (
m

Stk+1

Stk

− (m − 1)er T
n

)
for V τ

tk
− Ftk > 0

(
V τ

tk
− Ftk

)
er T

n for V τ
tk
− Ftk ≤ 0,

for all k = 0, . . . , n − 1. In particular, we have

V τ
T =

{
V τ

ts
er(T−ts) for ts ≤ tn−1

GT +
(
V τ

tn−1
− Ftn−1

) (
m

Stn

Stn−1
− (m − 1) Btn

Btn−1

)
for ts ≥ tn.

Notice that the value process V τ converges in distribution to the value process V if the
trading restrictions vanish, i.e. if n → ∞. The proof is based on the convergence of
the corresponding expectation and variance. Therefore, it is postponed to the end of the
following section where we calculate the moments and risk measures of the discrete–time
CPPI.

4. Risk Measures of Discrete–Time CPPI

Recall that the basic idea of a CPPI strategy is a portfolio protection. Heuristically, the
usage of these strategies is explained by an investor who wants to participate in bullish
markets but does not want the terminal value of the strategy to end up below a guar-
anteed amount G. Thus, the investor is completely risk averse for values below the floor
(or guarantee). As motivated in the previous sections, as soon as a source of market
incompleteness is considered, i.e. a restriction on the set of trading dates, the concept of
a perfect portfolio protection is impeded, in particular for dynamic strategies. With the
exception of static portfolio insurance strategies, there is a positive probability that the
terminal value is below the guaranteed amount. In particular, this is true for CPPI and
OBPI strategies which include a synthetic put. The use of such constrained strategies
or strategies which include a gap risk can be explained as follows. On the one hand,
one might think of an investor who accepts, because of market incompleteness, a strategy
which gives the guaranteed amount with a certain success probability. On the other hand,
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one might think of retail products which are based on the CPPI method and are thus also
hedged by a CPPI strategy. Normally, the buyer of such a product gets the guaranteed
amount even in the case that the strategy fails to provide it. Here, the issuer takes the gap
risk and considers this in his product pricing. In both cases, the risk profile of the CPPI is
of great interest. It is necessary to compute risk measures which allow a characterization
if the constrained CPPI is still effective in terms of portfolio insurance.

In the following, we take the view of an investor who uses the CPPI as a savings plan with
portfolio protection. A CPPI strategy contradicts the original idea of the portfolio insur-
ance if it results in a very high gap risk, i.e. if the shortfall probability and the expected
shortfall are prohibitively high. The investor has to decide whether this additional risk is
not too high in terms of a portfolio insurance. In addition to the expected final value and
its standard deviation, we consider the shortfall probability and the expected shortfall
given default as the risk measures which determine the effectiveness of the discrete–time
CPPI strategy.10 The shortfall probability is the probability that the final value of the
discrete–time CPPI strategy is less or equal to the guaranteed amount G. Intuitively,
one can also define a local shortfall probability (given that no prior shortfall happened
before). Additionally, we use the expected shortfall given default to describe the amount
which is lost if a shortfall occurs.

Definition 4.1 (Risk measures).

P SF := P (V τ
T ≤ G) = P (V τ

T ≤ FT ) shortfall probability

P LSF

ti,ti+1
:= P

(
V τ

ti+1
≤ Fti+1

|V τ
ti

> Fti

)
local shortfall probability

ES := E [G − V τ
T |V

τ
T ≤ G] expected shortfall given default.

It turns out that, in contrast to a discrete–time option based strategy with synthetic put,
the calculation of the shortfall probability implied by a CPPI strategy is very simple.
This is easily explained if one observes that the shortfall event is equivalent to the event
that the stopping time which is defined in Proposition 3.2 is prior to the terminal date.
It is convenient to consider the following lemma.

Lemma 4.2. Let Ak :=
{

Stk

Stk−1
> m−1

m
er T

n

}
for k = 1, . . . , n, then it holds

{ts > ti} =
i⋂

j=1

Aj and {ts = ti} = AC
i ∩

(
i−1⋂

j=1

Aj

)
for i = 1, . . . , n.

10Notice that the shortfall probability is not a coherent risk measure, i.e. it is not sub–additive. In
contrast, the expected shortfall given default is a coherent risk measure. We remain within the class of
stylized strategies, i.e. the CPPI strategies. Thus, it is in fact not a problem even if the effectiveness of
the strategies is analyzed by using a risk measure which is not sub–additive. For details on coherent risk
measures we refer to the work of Artzner, Delbaen, Eber, and Heath (1999).
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Shortfall probability
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Figure 3. V0 = 1000, GT =
1000, m = 12 (15 and 18 re-
spectively), µ = 0.085, r =
0.05 and σ = 0.1.
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Figure 4. V0 = 1000, GT =
1000, m = 12 (15 and 18 re-
spectively), µ = 0.085, r =
0.05 and σ = 0.3.

Proof: According to the poof of Proposition 3.2 it holds

V τ
tk+1

− Ftk+1
=

{ (
V τ

tk
− Ftk

) (
m

Stk+1

Stk

− (m − 1)er T
n

)
for V τ

tk
− Ftk > 0

(
V τ

tk
− Ftk

)
er T

n for V τ
tk
− Ftk ≤ 0.

The rest of the proof follows immediately with the definition of the stopping time ts and

m
Stk+1

Stk

− (m − 1)er T
n > 0 ⇐⇒

Stk+1

Stk

>
m − 1

m
er T

n .

Lemma 4.3. The local shortfall probability is independent of ti and ti+1, i.e.

P LSF

ti,ti+1
= P LSF = N (−d2) (6)

where d2 :=
ln m

m−1
+ (µ − r)T

n
− 1

2
σ2 T

n

σ
√

T
n

. (7)

Proof: Notice that

P LSF
ti,ti+1

= P
(
V τ

ti+1
≤ Fti+1

|V τ
ti

> Fti

)
= P (ts = ti+1|ts > ti) = P

(
St1

St0

≤
m − 1

m
er T

n

)
,

where the last equality follows with Lemma 4.2 and the assumption that the asset price
increments are independent and identically distributed (iid).

Proposition 4.4. The shortfall probability P SF is given in terms of the local shortfall
probability P LSF, i.e.

P SF = 1 −
(
1 − P LSF

)n
.

Proof: The above lemma is a direct consequence of Lemma 4.2 and the independence
of asset price increments.

P SF = 1 − P (ts = ∞) = 1 −
(
1 − P LSF

)n
.
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It can be shown, c.f. Lemma C.1 of the appendix, that the shortfall probability converges
to zero if we approach continuous–time trading, i.e. limn→∞ P SF = 0. At first glance, it
might be tempting to think that the shortfall probability is monotonically decreasing in
the hedging frequency, i.e. the number of rehedges n. In general, this is only true after
a sufficiently high n is reached. The effect that the shortfall probability is increasing for
small n is more pronounced for high volatilities and high multipliers, c.f. Figure 3 and
Figure 4.11 Let n∗ denote the number of rehedges such that the shortfall probability is
increasing in n for n ≤ n∗ and decreasing for n ≥ n∗. The critical level n∗ is to be inter-
preted as a minimal number of rehedges which is necessary such that the CPPI method
is effective for m ≥ 2 in discrete time. Consider for example a guaranteed amount G

given by G = erT m−1
m

V0 such that α0 = 1, i.e. the initial exposure in the risky asset
coincides with the initial investment. If in addition n is chosen to be one, i.e. there is no
rehedge until T , the discrete–time CPPI strategy coincides with a pure asset investment.
Obviously, the CPPI method can not be effective for n = 1, i.e. a pure asset investment is
not in the spirit of the CPPI method. Thus, it is intuitively clear that a minimal number
of rehedges becomes necessary such that the CPPI method applies if trading is restricted
to discrete time. The critical level n∗ and its implications are further discussed in Sec. 5
where the effectiveness of the discrete–time CPPI method is studied in detail.

If a shortfall is possible, one should also consider the amount of the shortfall or a risk mea-
sure which describes the amount of the shortfall. One possibility is given by the expected
shortfall ES which is introduced in Definition 4.1. It turns out that in order to determine
the expected shortfall, it is convenient to decompose the expected terminal payoff into
two parts. One part is given by the expected terminal value if a shortfall occurs and the
other by the expectation on the set where the terminal value is above the guarantee.

Proposition 4.5 (Expected final value). It holds

E [V τ
T ] = G + (V0 − F0)

[
En

1 + e−r T
n E2

erT − En
1

1 − E1e
−r T

n

]

where E1 := meµ T
n N (d1) − er T

n (m − 1)N (d2)

E2 := er T
n

[
1 + m

(
e(µ−r)T

n − 1
)]

− E1.

d2 is the same as in Lemma 4.3 and d1 := d2 + σ
√

T
n
.

Proof: Notice that

E [V τ
T ] = E

[
V τ

T 1{ts=∞}

]
+ E

[
V τ

T 1{ts≤tn}

]
.

With Lemma 4.2 and Lemma A.1 of Appendix A it follows

E
[
V τ

T 1{ts=∞}

]
= E

[
FT

n∏

i=1

1{
Sti

Sti−1
> m−1

m
er T

n

}

]
+ E

[
(V τ

T − FT )
n∏

i=1

1{
Sti

Sti−1
> m−1

m
er T

n

}

]

= G P (ts = ∞) + (V0 − F0) En
1 = G

(
1 − P SF

)
+ (V0 − F0) En

1 .

11It is straightforward to show that the shortfall probability is monotonically increasing in m and σ.
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For the second expectation, observe that

E
[
V τ

T 1{ts≤tn}

]
=

n∑

i=1

E
[
V τ

T 1{ts=ti}

]
.

The remaining part of the proof follows with Lemma A.2 of Appendix A and
n∑

i=1

er(T−ti)
(
FtiP

LSF(1 − P LSF)i−1 + E2E
i−1
1 (V0 − F0)

)

= G P SF + (V0 − F0)e
−r T

n E2
erT − En

1

1 − E1e
−r T

n

.

The calculation of the expected shortfall ES is now straightforward.12

Corollary 4.6 (Expected Shortfall). The expected shortfall ES which is defined as in
Definition 4.1 is given by

ES = G −
(V0 − F0)e

−r T
n E2

erT−En
1

1−E1e−r T
n

P SF
.

Proof: According to the definition, it holds

ES = E [G − V τ
T |ts < ∞] = G −

E
[
V τ

T 1{ts≤tn}

]

P SF
.

The proof is completed by inserting the result given in the proof of Proposition 4.5.

Proposition 4.7 (Variance of final value). It holds

V ar [V τ
T ] = (V0 − F0)

2

[
Ẽn

1 + e−2r T
n Ẽ2

e2rT − Ẽn
1

1 − e−2r T
n Ẽ1

]
− (E[V τ

T ] − G)2

where

Ẽ1 := m2e(2µ+σ2)T
n N (d3) − 2m(m − 1)e(µ+r)T

n N (d1) + (m − 1)2e2r T
n N (d2) ,

Ẽ2 := m2e(2µ+σ2)T
n − 2m(m − 1)e(µ+r)T

n + (m − 1)2e2r T
n − Ẽ1.

d1, d2 are defined as above and

d3 :=
2 ln m

m−1
+ 2(µ − r)T

n
+ 3σ2 T

n

4σ
√

T
n

.

Proof: Notice that

V ar [V τ
T ] = V ar [V τ

T − FT ] = E
[
(V τ

T − FT )2] − (E [V τ
T ] − FT )2

where E
[
(V τ

T − FT )2] = E[(V τ
T − FT )21{ts=∞}] +

n∑

i=1

E
[
(V τ

T − FT )21{ts=ti}

]
.

12The same is true for the price of the associated gap risk, i.e. the price of an option where the
payoff at T is given by (G− V τ

T )+. Notice that by standard financial theory, the t0–price is given by the
expected value of the discounted payoff under the martingale measure. However, the risk measures which
are considered here must be given with respect to the real world measure.
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Sensitivity of risk measures

Risk measures Strategy parameter Model parameter
G m µ σ

Mean ↓ ↑ ↑ ↑
Stdv. ↓ ↑ ↑ ↑

P SF – ↑ ↓ ↑
ESF ↓ ↑ ↑ ↑

Table 1. Sensitivity analysis of risk measures. We use the symbol ↑ for mono-

tonically increasing and ↓ for monotonically decreasing.

Analogously to the proof of Proposition 4.5, it follows with Lemma B.1 and Lemma B.2
of the appendix that

E
[
(V τ

T − FT )2] = (V0 − F0)
2
Ẽn

1 +
n∑

i=1

(V0 − F0)
2
e2r(T−ti)Ẽ2Ẽ

i−1
1 .

The remaining part of the proof follows with
n∑

i=1

e2r(T−ti)Ẽi−1
1 = e−2r T

n
e2rT − Ẽn

1

1 − e−2r T
n Ẽ1

.

The calculation of the expectation and variance of the discrete–time CPPI strategy can
now be used to prove the convergence, i.e.

Proposition 4.8 (Convergence). For n → ∞, the value process V τ converges to the
value process V in distribution, i.e.

V τ L
→ V.

In particular, it holds

lim
n→∞

E [V τ
T ] = G + (V0 − F0) exp {(r + m(µ − r)) T}

lim
n→∞

V ar [V τ
T ] = (V0 − F0)

2 exp {2 (r + m(µ − r)) T}
(
exp

{
m2σ2T

}
− 1

)
.

Proof: The proof is given in Appendix C.

Before we study the effectiveness of the time–discretized CPPI in detail, we end this sec-
tion with a sensitivity analysis of the risk measures. In order to avoid a lengthy discussion
of all possible sensitivities, we summarize the main results in Table 1. The corresponding
proofs are straightforward. Notice that the shortfall probability is independent of G, c.f.
Proposition 4.4. Partial differentiation immediately yields that the shortfall probability
is increasing in σ and m but decreasing in µ. In contrast, the sensitivity analysis of the
other risk measures is tedious. For example, the monotonicity of the expected terminal
value, i.e. E[V τ

T ], in σ is shown in Appendix D. Similar arguments to the ones presented
here can also be used to show that the expected terminal payoff is also increasing in µ and
m. Monotonicity in G and V is immanent. With respect to the standard deviation, it is
intuitively clear that the the volatility σ has a positive effect on the standard deviation,
so does m. It is worth mentioning that both the shortfall probability and the expected
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Moments of continuous–time CPPI

multiplier m Mean Stdv. Dev.
12 1078.03 (1078.03) 140.04 (1387.90)
15 1086.67 (1086.67) 252.51 (7801.45)
18 1096.27 (1096.27) 476.83 (62763.30)

Table 2. Moments.

shortfall are increasing in m and σ. This implies that a discrete–time CPPI is not effective
in discrete time if either the standard deviation is too high in comparison to the multiplier
or vice versa.

5. Effectiveness of the discrete–time CPPI method

As shown above, the effectiveness of the discrete–time CPPI method depends on the strat-
egy parameters, i.e. the multiplier m, the number of rehedges n and the guarantee G,
as well as the model parameters µ and σ. The most important influences are caused by
the multiplier m and the volatility σ. Therefore, all examples are considered for varying
multipliers and volatilities. If not mentioned otherwise, we consider a model scenario
where µ = 0.085, σ = 0.1 (0.2 or 0.3, respectively) and r = 0.05. The time to maturity
of the CPPI strategy is equal to one year (T = 1), the initial investment coincides with
the guarantee, i.e. V0 = G = 1000. Thus, the goal of the strategies under consideration
is to ensure 100% of the initial capital. This is in accordance to guaranteed fund man-
agement.13 For the multiplier m we consider the values 12, 15 and 18. Here, the initial
asset exposure m

(
V0 − e−rT G

)
is 585.247 for m = 12, 731.559 for m = 15 and 877.870 for

m = 18 such that the relative initial asset investment varies between 0.585 and 0.88. A
high multiplier is convenient in order to emphasize all effects and to highlight the effect
of a small change in volatility.

First, we consider the question whether the discrete–time CPPI method gives a good
approximation of the continuous–time CPPI for a finite number of rehedges n. Recall
that the value process of the discrete–time CPPI converges to the value process of the
continuous–time CPPI in distribution, c.f. Proposition 4.8. Since the cushion process of
the continuous–time CPPI is lognormal, the payoff distribution of the continuous–time
CPPI is described by its mean and its standard deviation. These numbers are summa-
rized in Table 2. In comparison, Table 3 summarizes the moments and risk measures for
various numbers of rehedges n.

Now consider the shortfall probability. Observe, that in the case where σ = 0.1, a monthly
CPPI–strategy (n = 12) with a multiplier m = 12 implies a shortfall probability of only
0.01. In contrast, a volatility of σ = 0.2 gives a shortfall probability of more than 0.5.
Thus, the monthly CPPI strategy ensures a significant protection level for σ = 0.1 while

13It is worth mentioning that the probability that the CPPI portfolio value is higher than the OBPI
value increases in the percentage of the insured initial investment, c.f. Bertrand and Prigent (2003).
Recall that V OBPI

T = G+[ST −G]+. Thus, the above effect is intuitively explained by observing that the
probability of exercising the embedded call option is decreasing in the strike.
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Moments of discrete–time CPPI

n m Mean Stdv. Dev. SFP ESF

12 12 1077.53 (1080.23) 125.04 (703.03) 0.0115 (0.5430) 5.463 (25.933)
24 12 1077.77 (1078.60) 132.01 (948.79) 0.0002 (0.3195) 2.981 (12.296)
48 12 1077.90 (1077.98) 135.88 (1133.36) 0.0000 (0.0580) 1.574 (5.802)
96 12 1077.97 (1077.97) 137.92 (1249.06) 0.0000 (0.0009) 0.000 (3.037)

n m Mean Stdv. Dev. SFP ESF

12 15 1085.94 (1074.28) 206.30 (1874.59) 0.0767 (0.7592) 8.901 (57.01)
24 15 1086.22 (1090.92) 226.81 (3361.17) 0.0069 (0.6610) 4.836 (27.86)
48 15 1086.44 (1087.43) 238.86 (4936.18) 0.0000 (0.3258) 2.597 (11.03)
96 15 1086.56 (1086.60) 245.46 (6130.89) 0.0000 (0.0333) 1.364 (5.02)

n m Mean Stdv. Dev. SFP ESF

12 18 1095.70 (1120.63) 339.07 (4924.65) 0.2094 (0.8691) 13.911 (118.32)
24 18 1095.65 (1111.58) 396.37 (12759.40) 0.0494 (0.8593) 7.296 (64.66)
48 18 1095.90 (1101.08) 432.75 (25691.30) 0.0015 (0.6767) 3.908 (23.70)
96 18 1096.08 (1096.68) 453.66 (39053.60) 0.0000 (0.2131) 2.067 (8.30)

Table 3. The time horizon is T = 1 year and the guarantee G is equal to the

initial investment Vt0 = 1000. The model parameters are given by µ = 0.085,

r = 0.05 and σ = 0.1 (σ = 0.2 respectively).

the concept of portfolio insurance is already impeded for σ = 0.2. Here (for σ = 0.2),
even a weekly rehedging, i.e. n = 48 is not enough to achieve a shortfall probability of less
than 0.05. This illustrates that the effectiveness of the discrete–time CPPI method is very
sensitive to the volatility of the asset price process. Besides, the higher the multiplier,
the more pronounced the effect is. For example, notice that the shortfall probability for
a CPPI–strategy with n = 24 and m = 18 is 0.049 for σ = 0.1 but 0.86 for σ = 0.2.

Recall that the shortfall probability is not necessarily monotonically decreasing in the
number of rehedges. A very large shortfall probability implies that the number of re-
hedges is still too low to achieve an effective portfolio protection. For example, one might
think of the extreme case that n = 1, i.e. the case where the portfolio is held constantly
on the trading period [0, T ]. Obviously, a portfolio protection can only be achieved if only
the surplus is invested in the risky asset. One can argue that the CPPI method is not
effective if the number of rehedges n is still in a region where the shortfall probability is
increasing in n. Thus, it is convenient to determine the minimal number n∗ such that
an increase in the number of portfolio rebalancing dates is able to reduce the shortfall
probability. For different combinations of σ and m, the critical number n∗ is illustrated
in Table 4.14 However, n∗ can only be used as a number which is at least necessary to
achieve an effective portfolio insurance.

One solution to ensure the effectiveness of the discrete–time CPPI method is given by
the possibility to determine the contract parameters such that the probability of falling
below the guarantee is bounded above by a confidence level γ, for example γ = 0.99 (or

14Compare also the remarks in the last section referring to Figure 3 and Figure 4.
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Minimal number of rehedges

m σ n∗ m σ n∗ m σ n∗

12 0.1 2.00 15 0.1 3.08 18 0.1 4.40
12 0.2 7.00 15 0.2 11.09 18 0.2 16.11
12 0.3 15.35 15 0.3 24.44 18 0.3 35.64

Table 4. Minimal number n∗ of rehedges such that the shortfall probability is

decreasing in n.

γ = 0.95). This can be explained by an investor who is aware of market incompleteness
and accepts a small shortfall probability with respect to the guarantee. Again, we con-
sider the same model scenario where T = 1, µ = 0.085, r = 0.05, V0 = G = 1000 and
distinguish between σ = 0.1 and σ = 0.2. For illustration, we determine (n,m)–tupels
which give a shortfall probability of 0.01 and 0.05. The resulting values as well as the
corresponding other risk measures are given in Table 5. For example, observe that in
the case of σ = 0.1, the CPPI method with monthly rehedging and a multiplier of 11.84
ensures that the capital is maintained with a probability of 0.99. At the same time the
expected payoff and the variance of the payoff are similar to the ones obtained by a direct
investment in S, i.e. for the expectation compare 1077 to 1088 and for the standard de-
viation compare 121.75 to 109.14.15 Therefore, in the case where σ = 0.1, even a monthly
rehedging is enough to give a high success probability if the multiplier is chosen appro-
priately.16 However, in case of a volatility scenario where σ = 0.2, the multiplier is to be
chosen much more conservatively. Finally, it is worth mentioning that it is sufficient to
control the shortfall probability if one also wants to control the expected shortfall which
is unarguably a more convincing risk measure. In the above example, it is approximately
the same if one keeps the shortfall probability on a 0.01 level or if one keeps the expected
shortfall at a level of 5.2.

6. conclusion

The introduction of market incompleteness and model risk impedes the concept of dynamic
portfolio insurance, i.e. the technique of constant portfolio insurance. The introduction

15A direct investment of V0 in the asset S gives for σ = 0.1 (σ = 0.2 respectively)

E

[
V0

ST

S0

]
= V0e

µT = 1088.72 (1088.72)

√
Var

[
V0

ST

S0

]
= V0

√
e(2µ+σ2)T − e2µT = 109.144 (219.939)

P

(
V0

ST

S0
≤ G

)
= 0.212 (0.373).

16Again, it is worth mentioning that although a multiplier of approximately 12 seems to be fairly large,
it is to be interpreted in combination with the low volatility. In particular, a multiplier of m = 11.843
implies that for a guarantee G = V0 = 1000 the initial amount invested in S is given by

αV0 = m(V0 − F0) = 11.843(1000 − e−0.051000) = 577.59.
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Risk profile for discrete–time CPPI strategies with a shortfall probability of
0.01 (0,05).

σ = 0.1
n m Mean Stdv. ES

12 11.843 (14.124) 1077.118 (1083.377) 121.752 (178.420) 5.313 (7.770)
24 15.446 (18.024) 1087.558 (1095.730) 246.087 (398.225) 5.157 (7.319)
36 18.146 (20.956) 1096.273 (1106.154) 432.362 (774.426) 5.149 (7.217)
48 20.386 (23.389) 1104.150 (1115.646) 717.129 (1419.070) 5.186 (7.219)
60 22.336 (25.507) 1111.528 (1124.588) 1152.310 (2511.390) 5.243 (7.267)

σ = 0.2
n m Mean Stdv. ES

12 6.065 (7.152) 1063.302 (1065.747) 107.138 (150.350) 4.478 (6.432)
24 7.879 (9.128) 1067.464 (1070.485) 204.334 (316.650) 4.275 (5.931)
36 9.234 (10.605) 1070.748 (1074.241) 345.136 (591.266) 4.190 (5.720)
48 10.358 (11.829) 1073.591 (1077.500) 554.966 (1048.690) 4.145 (5.605)
60 11.335 (12.893) 1076.156 (1080.449) 868.650 (1804.760) 4.121 (5.535)

Table 5. For a given discretization in terms of n, the multiplier is determined

such that the implied shortfall probability is 0.01 (0.05 respectively).

of tradings restrictions is one possibility to model a gap risk in the sense that a CPPI
strategy can not be adjusted adequately. Measuring the risk that the value of a CPPI
strategy is less than the floor (or guaranteed amount) is of practical importance for at
least two reasons. On the one hand, CPPI strategies are common in hedge funds and
retail products. Often, a CPPI strategy is pre–specified in the term sheet of hedge funds.
In addition, it is combined with a guarantee for the investor. Thus, an additional option
is written. The option is exercised if the value of the CPPI strategy is below the floor.
On the other hand, CPPI strategies can be used to protect return guarantees which are
embedded in unit–linked life insurance contracts. The terminal date T is interpreted as
the time of retirement and the guarantee is interpreted as the amount which is at least
needed by the insured. The assumption that the insurer wants to back up the guarantee
by a simple and discrete–time investment strategy highlights some advantages in favor of
the CPPI method. Firstly, it is computationally very simple and it can easily be applied in
discrete time. Secondly, the composition of a CPPI strategy is independent of the model
assumption of the investor or insurer who might use a misspecified model. Thirdly, the
riskiness in terms of commonly used risk measures which is induced by trading restrictions
can be given in closed form. In particular, this is also true for the price of an additional
option which is normally included in CPPI–based products.

The analysis of the risk measures of a discrete–time CPPI strategy poses various problems
which are to be considered. Basically, it is necessary to check the associated risk measures
and to determine whether the strategy is still effective in terms of portfolio protection.
For example, the protection feature is violated if the shortfall probability of the CPPI
strategy under consideration exceeds the shortfall probability of a pure asset investment.
Formally, the last one can be interpreted as a static CPPI. Intuitively, this explains the
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result that the shortfall probability of a discrete–time CPPI is only decreasing in the
hedge frequency after a sufficiently high number of rehedges. Below this critical number,
the shortfall probability increases such that additional adjustments of the strategy yield
a shortfall probability which is even higher than the one of a pure asset investment. This
effect is even more pronounced for high asset price volatilities and high multipliers. Thus,
if one restricts the set of admissible strategies to those strategies which satisfy a confidence
level of protection, the choice of the CPPI–multiplier is naturally restricted. A similar
reasoning is applied to other risk measures such as the expected shortfall.

Appendix A. Proof of Proposition 4.5

Lemma A.1. Let d1, d2 and E1 be defined as in Proposition 4.5, then it holds
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]
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i for all i = 1, . . . , n.

Proof: The following calculations are based on Proposition 3.2, Lemma 4.2 and the
assumption that the asset price increments are independent and identically distributed
(iid).
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Finally, notice that the last expectation matches the definition of E1, i.e. it holds
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Lemma A.2. Let E1 and E2 be defined as in Proposition 4.5, then it holds

E
[
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Proof: With Proposition 3.2 and Lemma 4.2 it follows
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Notice that if there is no shortfall until ti−1 it holds, c.f. Proposition 3.2
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With Lemma A.1 and the assumption that the asset price increments are iid, it follows
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Finally, it is straightforward to check that the above expectation satisfies the definition
of E2.

Appendix B. Variance of Discrete–Time CPPI

Analogously to Appendix A, we consider the following two lemmas.

Lemma B.1. Let Ẽ1 be defined as in Proposition 4.7, then it holds
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Proof: Analogously to the proof of Lemma A.1 it is straightforward to show that
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Lemma B.2. Let Ẽ1 and Ẽ2 be defined as in Proposition 4.7, then it holds
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Analogously to the proof of Lemma A.1, observe that
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An application of Lemma B.1 gives
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Finally, it is straightforward to check that the above expectation satisfies the definition

of Ẽ2.

Appendix C. Convergence (Proof of Proposition 4.8)

First, we consider the convergence of the shortfall probability, the expected value and the
variance of the value.

Lemma C.1. It holds

lim
n→∞

P SF = 0,

i.e. the shortfall probability converges to zero if the trading restrictions vanish.

Proof: Let f ∈ C1(R) such that limx→∞ f(x) = 1. With

lim
x→∞

(f(x))x = lim
x→∞

(
1 +

x(f(x) − 1)

x

)x

= elimx→∞ x(f(x)−1)

together with an application of L’Hôpital’s rule, i.e.
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The rest of the proof follows immediately with the definition of d2, c.f. Proposition 4.5,
and

lim
n→∞

e−nnk = 0 for all k ∈ N.

Lemma C.2. It holds

lim
n→∞

E [V τ
T ] = G + (V0 − F0)e

(r+m(µ−r))T ,

i.e. the expected value of the discrete–time CPPI converges to the expected value of a
simple CPPI if the trading restrictions vanish.
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Proof: According to Proposition 4.5 it holds

E[V τ
T ] = G + (V0 − F0)E

n
1 + (V0 − F0)e

−r T
n E2

erT − En
1

1 − E1e
−r T

n

. (8)

First, we consider the limit of En
1 . Using the definition of E1, c.f. Proposition 4.5, it is

straightforward to show that limn→∞ E1 = 1. According to the proof of Lemma C.1 it
holds
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Notice that the last two terms on the right-hand side vanish for n → ∞. Besides, with
the definitions of d1 and d2, c.f. Proposition 4.5, it immediately follows

lim
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such that
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Thus, it is still to show that the last term of the right hand side of Equation (8) converges
to zero. Inserting E2 according to its definition, c.f. Proposition 4.5, the relevant term is
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Notice that limn→∞ m
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Lemma C.3. It holds

lim
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i.e. the variance of the discrete–time CPPI converges to the variance of a simple CPPI
if the trading restrictions vanish.

Proof: Recall that according to Proposition 4.7 it holds
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Analogously to the proof of Lemma C.2, it can be shown that Ẽ2
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Similar arguments to the ones given in the proofs of Lemma C.2 and Lemma C.1 imply

lim
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Finally, Lemma C.2 immediately gives
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In order to prove Proposition 4.8 it is remains to show that, for n → ∞, the limiting
distribution of ln(V τ

T ) is a normal distribution . Let

ζn :=
n∑

i=1

ln

(
m

Sti

Sti+1

− (m − 1)er T
n

)

︸ ︷︷ ︸
=:ξi,n

.

With Lemma C.1, i.e. limn→∞ P SF = 0, it follows that it is sufficient to show that the
limiting distribution of ζn is a normal distribution. Applying the results for rowwise
independent arrays of Gnedenko and Kolmogorov (1954), c.f. in particular Theorem 1 in
Ch.5 §26, it remains to show that

n∑

i=1

P (|ξi,n| > ε)
n→∞
−→ 0 for all ε > 0.

Using the independency, one only needs to show that

nP (|ξ1,n| > ε)
n→∞
−→ 0 for all ε > 0.

This proof is straightforward, i.e. it is given by arguments which are similar to the ones
used in the proofs of the above lemmas.

Appendix D. Expected terminal value of discrete–time CPPI is
monotonically increasing in the volatility

With Proposition 4.5 and the definition of E2 it follows that
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It is straightforward to show that E1 > er T
n . For µ > r, the expected terminal value of

the discrete CPPI strategy is always larger than the investment in the riskless asset. This
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is quite intuitive.
Now, consider the derivative with respect to σ, i.e.
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For µ > r, the leading factors are positive. Besides, we have

∂ E1

∂ σ
> 0.

The proof of the above inequality is omitted here. In particular, analogous calculations as
for the determination of the so–called vega of a call–option price in a Black/Scholes–type
model are needed. Finally, it is to show that
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An application of Bernoulli’s inequality gives
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Notice that because E1 > er T
n , the above inequality is also strict.
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