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Optimal Compensation with

Induced Moral Hazard in Investment

Abstract. We extend the principal-agent framework in the sense that the prin-

cipal can neither verify the agent’s effort choice nor his investment strategy. In

this setting, we provide a rationale for compensating the manager with equity

based pay in a manner closely related to a call option. Moreover, contrary to the

common belief, we show that maximizing the “incentives” by standard measures

used in the finance literature induces the manager to an inoptimal investment

and effort choice. Finally, benchmarking the manager’s compensation by market

additional information turns out to be far from straightforward.

Keywords. Optimal compensation, executive stock option, investment, principal

agent model.
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1 Introduction

An important element in Corporate Governance is the set of mechanisms which serve to influence

management decisions when ownership and control are separate. One important mechanism is

the compensation of managers. As Corporate Governance in general, stock and option compen-

sation are hotly debated topics. Naturally, the proliferation and especially the level of equity

incentives have contributed to the interest. Hall and Liebman (1998) report that in 1994 ap-

proximately 90% of US top management held options as part of their portfolios and Hall and

Murphy (2002) find that 94% of the S&P 500 companies issued options to management in 1999.

The value of options granted and equity instruments held is significant. For S&P 500 companies

Hall and Murphy (2002) find that in 1999 the grant value of options awarded constituted 47% of

annual top management compensation and the median market value of top management equity

instrument holdings was $31 million – the latter applies to the industrial companies in S&P 500.

As part of the governance structure, the declared purpose of most option grants and stock

appreciation rights awarded is to attract, retain, and motivate management as well as lower

level employees. Given there are other means of achieving these goals – bonus schemes, lump

sum payments, and regular salary – a natural question is whether equity based compensation

is efficient. As efficiency concerns whether a given purpose is achieved cost effectively, it seems

efficiency of equity based incentives can be analyzed in two parts. One part concerning the cost

and another part concerning the incentive effects of equity based programs. Though seemingly

straightforward, the cost of an option grant is hard to determine. Options granted can be

European or American and can have all kinds of vesting periods. As the recipient is risk-averse

and the options granted are usually non-tradable and non-replicable, the recipient might pursue

an otherwise inoptimal exercise strategy. Furthermore, the market value – given the recipient’s

exercise strategy – and the value to the recipient as measured by the certainty equivalent of the

option grant can differ significantly. This has given rise to the perception that option contracts

are inefficient because the owners pay for more than they get.1 This position could have some

merit as the difference between cost and certainty equivalent – the risk premium – is part of

agency costs.2

It turns out, however, that separation of the problem into a cost-benefit framework is prob-

lematic. Analyzing costs is difficult, but estimating benefits turns out to be even more problem-

1Oddly, the opposite conclusion has not been reported even though the certainty equivalent can be higher than

the market value.

2Agency costs consist of two parts. One part is the efficiency loss caused by the change in production decisions

– relative to the situation where these choices are contractible. The other part is the efficiency loss caused by

inefficient risk-sharing inherent in resolving the agency problem.
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atic. In the literature, a common proxy for the benefit of option incentives is the sensitivity of

the manager’s (option) portfolio with respect to the current share price. Regardless of whether

the sensitivity is measured as the hedge ratio or the derivative of the certainty equivalent with

respect to current share price, the underlying assumption is that the manager can affect only

the first moment in the distribution of future share price. If this assumption does not hold,

the manager might have an incentive to reduce market value. Lambert, Larcker and Verrechia

(1991) demonstrate that a risk averse manager holding a call option can have an incentive to

reduce variance despite the fact that this reduces the market value of the option (and of the

company). Even more problematic is the fact that incentive effects of option contracts are evalu-

ated without explicit modeling of how option-like contracts can arise endogenously. It is an open

question what conclusions can reasonably be drawn if the incentive problem under consideration

is exogenously assumed to be most efficiently resolved employing an option contract.

The incentive effect of an option grant gives rise to another problem which is easily missed

if the efficiency consideration is separated into costs and benefits. The problem is that incentive

effects and pricing are interdependent. Thus, it is not without problems when Hall and Murphy

(2002) try to maximize the incentive effects as measured by the sensitivity of the manager’s

certainty equivalent to current share price holding both the cost and manager certainty equiv-

alent constant. The market value of the company, the firm’s cost, and the manager’s certainty

equivalent are all affected by incentives, however, it is unclear whether this is taken into con-

sideration. We demonstrate that maximizing incentives via the procedure suggested by Hall

and Murphy (2002) can have devastating effects. If the agent can increase variance without

bounds, and the agent faces an option contract with sufficiently high incentives, the risk is he

will overinvest to increase variance. Hence, our analysis suggests that if it is possible, then it

would be advantageous to separate investment and operating decisions, even if it leads to a loss

of efficiency in the first-best situation.3

Many of the procedures recommended in the practice oriented literature – e.g. Activity

Based Costing, Balanced Scorecard and the use of options – have nice aesthetic properties;

however, they are rarely derived endogenously. We develop a parsimonious model in which

costs and benefits are considered in a unified setup, and in doing so we provide an explanation

for convexity in compensation in the sense that contracts are convex-like when incentives for

both effort and investments must be provided, while convexity is less convincing when only

incentives for effort are needed. Core and Qian (2002), Feltham and Wu (2001), Hemmer, Kim

and Verrechia (1999), and Lambert (1986) pursue similar strategies in the sense that effort

3We thank A. Arya for pointing this out to us.
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either affects variance or the agency problem entails project selection. Our model differs from

the beforementioned papers in the sense that we study a setting where the agent makes two

decisions. The agent exerts effort, which affects the mean outcome, and the agent undertakes

investment, which affects both mean and variance. Both the effort and investment opportunity

sets are unbounded and the decision variables can be varied independently. The agent has direct

preferences over effort decisions but no direct preferences over investments. This leads to an

induced moral hazard problem where the compensation scheme needed to induce effort leads to

an induced moral hazard problem regarding investments. Furthermore, our model allows for a

study of the agent’s risk taking behavior, when the agent is exposed to option contracts.4

Our formal demonstration of convexity in compensation proceeds as follows. The key el-

ements of our model are described in section 2. Section 3 presents a benchmark case where

investments are either observable or controlled by the principal. Section 4 contains the analysis

of the situation where incentives for both effort and investment must be provided, while sections

5 and 6 present an analysis of the problem where the shape of contracts is restricted. Section 7

addresses the question of whether and how additional information should enter the compensation

arrangement and we conclude in section 8.

2 Model

We consider a one-period principal-agent model in which an important variation on the usual

story is introduced: the agent has available a certain amount of working capital, which the agent

invests in two distinct technologies, one risky and one riskless technology. The available working

capital is given exogenously and, hence, it is not a decision variable. We initially assume the

optimal investment in the risky technology is less than the available working capital and that

the principal can observe any borrowing by the agent. That is, the agent cannot invest in excess

of the capital already at his disposal.5

The principal observes neither effort choice nor the allocation of investment capital between

the technologies. And thus, the only contracting variable available to the principal is total payoff

or market value resulting from the investment and production decisions made by the agent.

The principal is risk neutral, and the agent is “effort” and risk averse. The action set, A, is

convex as is the output set, X. The game begins at time t = 0, where a contract (specifying

labor supply, working capital supplied, allocation of investments, and compensation function)

is agreed upon by the principal and the agent. The agent immediately allocates the available

4If there are only two alternative investments, it is less interesting to study the agent’s risk taking behavior.

5Some of these assumptions are weakened in section 5.
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capital, q, between a risky investment, qp, in a productive technology and a risk-free investment,

qrf
, in a financial type asset yielding zero interest. Subsequently the agent supplies productive

effort, a, both parties observe final output or market value, x ∈ X, and finally the agent receives

remuneration, s(x), from the principal. Thus, we have the time line illustrated in Figure 1.

t = 0 t = 1

Contract Agent invests Signal Payments

s(x) and supplies effort: x made to

offered qp, a observed agent

to the s(x)

agent

Figure 1: Time line of the model

As noted, the principal is risk neutral and we assume the principal maximizes expected

profit, measured as total expected output net of compensation to the agent, whereas the agent’s

utility depends both on the available consumption, c, and effort, a.6 That is, the agent’s utility

is

U(c, a).

We further assume Ua(c, a) < 0, Uaa(c, a) < 0, Uc(c, a) > 0, Ucc(c, a) < 0, i.e., the agent is risk

and effort averse.

The output, x, depends on productive effort and investments as well as on an unobservable

state of nature. g(x |a, qp, q) denotes the density over x conditioned on productive effort, a,

productive investment, qp, and investment in the risk-free asset, qrf
= q − qp. We henceforth

suppress q and denote the density g(x |a, qp).

The program describing the Pareto optimal contracts can be formulated as follows:

max
s(x),a,qp

∫ ∞

−∞

[x − s(x)]g(x |a, qp) dx [P1]

s.t.
∫ ∞

−∞

U(s(x), a)g(x |a, qp) dx ≥ R,

a ∈ arg max
â

∫ ∞

−∞

U(s(x), â)g(x |â, qp) dx,

qp ∈ arg max
q̂p≤q

∫ ∞

−∞

U(s(x), a)g(x |a, q̂p) dx,

s(x) ≥ s
¯
,

6Neither the agent’s nor the principal’s preferences exhibit time preference.
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where s(x) > s
¯

expresses the limited liability of the agent. Assuming the first-order-approach is

valid, the principal solves

max
s(x),a,qp

∫ ∞

−∞

[x − s(x)]g(x |a, qp) dx [P2]

s.t.
∫ ∞

−∞

U(s(x), a)g(x |a, qp) dx ≥ R,

∫ ∞

−∞

[Ua(s(x), a) + U(s(x), a)
ga(x |a, qp)

g(x |a, qp)
]g(x |a, qp) dx = 0,

∫ ∞

−∞

U(s(x), a)gqp(x |a, qp) dx = 0,

s(x) ≥ s
¯
.

Proposition 1 Assuming the incentive constraint is binding on both the moral hazard and the

capital allocation constraints, pointwise optimization yields the following first-order-condition

with respect to the compensation scheme – where this is interior:

1

Us(s(x), a)
= λ + µa

[

Uas(s(x), a)

Us(s(x), a)
+

ga(x |a, qp)

g(x |a, qp)

]

+ µqp

gqp(x |a, qp)

g(x |a, qp)
(1)

Proof. See Holmström (1979).

Commonly, the assumption regarding the agent’s preferences is that

U(s(x), a) = −H(a) + J(a)V (s(x)),

where either H(·) or J(·) is assumed constant. That is, the agent’s preferences are either multi-

plicatively or additively separable in a and s(·), see e.g. Grossman and Hart (1983). Furthermore,

in standard agency models investment problems are usually not modeled explicitly or invest-

ments are assumed to be contractible, i.e., [P1] can be solved without the incentive compatibility

constraint concerning qp. Given these assumptions (1) becomes

1

Us(s(x), a)
= λ + µa

[

J ′(a) +
ga(x |a, qp)

g(x |a, qp)

]

. (2)

From (2) it is seen that compensation depends on the likelihood ratio ga/g, which reflects how

strongly the output, x, indicates the true distribution from which x is drawn is g(x |a, qp). It

follows from (1) and (2) that utility functions and distributional assumptions can be combined to

yield convex compensation schemes. For example, if 1/Us(s(x), a) is concave (convex) in s(·) and

the right-hand side of (2) is affine in x, then s(x) is convex (concave).7 Such combinations are

utilized by Hemmer, Kim and Verrechia (1999) and Feltham and Wu (2001) to display convexity

7Alternatively, if U(s(x), a) = ln(s(x))−H(a), then the shape of the compensation scheme is determined solely

as a function of the distributional assumptions as 1/Us(s(x), a) = s(x).

5



in the agent’s compensation. Similarly, Lambert (1986) and Core and Quian (2002) show that

incentive problems concerning the personally costly identification and analysis of investments

and the subsequent investment decision can lead to convexity in the agent’s compensation.

Our focus is on induced moral hazard problems. If effort, a, as well as investment, qp, are con-

tractible, the principal can write a forcing contract and thus the optimal compensation contract

is independent of output, i.e., s(x) is constant. As the agent has no direct preferences over in-

vestments, the same will hold assuming effort, but not investment, is contractible. The opposite

conclusion, i.e., that dealing with the effort incentive problem will lead to efficient investment

decisions, does not necessarily hold – regardless of the fact the agent has no direct preferences

over investments. As noted, the optimal compensation scheme ignoring the investment but not

the effort decision is characterized by (2). However, implementing this compensation scheme

might lead the agent to undertake inoptimal investment decisions. In fact, if the compensation

schemes characterized in (1) and (2) are not identical almost everywhere we have an induced

moral hazard problem concerning the investment decision.

In order to be able to derive tractable results, we assume henceforth that the agent’s prefer-

ences reflect – in addition to no discounting – constant absolute risk aversion with coefficient r,

i.e.,

U(s(x), a) = − exp{−r(s(x) − C(a))},

where C(a) is personal (monetary) cost of action, which is increasing and weakly convex in action

(C ′(a) > 0 and C ′′(a) ≥ 0). Given the agent’s effort and production choice, we assume that the

expected outcome is described by a production function f(a, qp) and the risk free investment,

where f(·) is strictly increasing and weakly concave.8 In particular, we assume that

x = f(a, qp) + h(qp)
1

2 ǫ̃ + q − qp, (3)

where ǫ ∼ N(0, σ2), and where h(qp) is strictly increasing. We can interpret (3) as if the agent’s

productive investment affects scale – and thus both mean and variance – while productive effort

affects only the conditional mean of firm value. These assumptions imply that the density of

output is

g(x |a, qp) =
1

h(qp)
1

2 σ
√

2π
exp{−1

2

(x − f(a, qp) − (q − qp))
2

σ2h(qp)
},

that
ga(x |a, qp)

g(x |a, qp)
=

(x − f(a, qp) − (q − qp))fa(a, qp)

σ2h(qp)
, (4)

8That is, fa(·), fqp
(·) > 0, faa(·), fqpqp

(·) ≤ 0, and faa(·)fqpqp
(·) − faqp

(·)2 ≥ 0.
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and that

gqp(x |a, qp)

g(x |a, qp)
= −1

2

h′(qp)

h(qp)

+
1

2

h′(qp)

h(qp)

1

σ2h(qp)
[x − f(a, qp) − (q − qp)]

2

+
1

σ2h(qp)
{x − f(a, qp) − (q − qp)}

[

fqp(a, qp) − 1
]

= −1

2

h′(qp)

h(qp)
+

1

σ2h(qp)
{x − Ex |a, qp }

[

fqp(a, qp) − 1
]

(5)

+
1

2

h′(qp)

h(qp)

1

σ2h(qp)
[x − Ex |a, qp ]2 .

That is, the likelihood ratio is a strictly convex function of outcome, x.

3 Benchmark case: investment level contractible

As noted, the principal effectively sets the productive investment level, qp, when the investment

is contractible. Inserting (4) into (2), we see that this implies that the first-order condition with

respect to the compensation scheme (where this is interior) is

1

r exp{−r(s(x) − C(a))} = λ + µa[rC
′(a) +

(x − f(a, qp) − (q − qp))fa(a, qp)

σ2h(qp)
] (6)

or equivalently

s(x) = max

{

s
¯
,
1

r
ln(r) +

1

r
ln

[

λ + µa[rC
′(a) +

(x − Ex |a, qp )fa(a, qp)

σ2h(qp)
]

]

+ C(a)

}

. (7)

s(x) is locally – where the compensation scheme is interior – an increasing and concave

function (of x).9 This leads to two observations. Firstly, as a high outcome indicates more

strongly the agent did behave, a higher output is considered good news. Secondly, compensation

is largely concave in x and local convexity is present only due to the limited liability constraint,

s(x) ≥ s
¯
.10 For low level employees the limited liability constraint might be of first order

importance; however, we doubt this is the case for executives in large companies. Empirically

it seems most compensation packages consist of a relatively high base with option incentives on

top. Hence, we do not feel convexity induced by a limited liability constraint is a compelling

case for the seeming convexity in compensation contracts. Instead we will study incentives in

9Without the limited liability constraint an optimal solution might not exist. According to Mirrlees (1999) it

is possible to get arbitrarily close to first-best – the Mirrlees problem. Being casual the problem is the right-hand

side of (6) is affine in x. It follows µa cannot be positive, since if it is, values of x exist for which the right hand

side of (6) and thus marginal utility becomes negative.

10We are being casual here; the function is neither convex nor concave.
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a setting where the presence of induced moral hazard problems necessitates convexity in the

compensation contract.

4 Investment level is unobservable

Given the agent is offered a contract like (7), then – if given the opportunity – the agent

has an incentive to reallocate investments and, thus, we have an induced moral hazard problem

(regarding investments). When the allocation of capital is unobservable, the first-order approach

yields – insert (4) and (5) into (1) –

1

r exp{−r(s(x) − C(a))} = λ + µa[rC
′(a) +

(x − Ex |a, qp )fa(a, qp)

σ2h(qp)
] (8)

+µqp

[

−1

2

h′(qp)

h(qp)

]

+µqp

1

σ2h(qp)
{x − Ex |a, qp }

[

fqp(a, qp) − 1
]

+µqp

1

2

h′(qp)

h(qp)

1

σ2h(qp)
[x − Ex |a, qp ]2 .

By (8) the compensation scheme is an increasing concave function of the weighted likelihood

ratios, and as h′(qp) > 0, the right-hand side of (8) is quadratic in x. Since the right-hand side

of (8) is a second-degree polynomial for positive µqp , the compensation scheme is symmetric

around a global minimum and thus low as well as high outcomes are rewarded.11 Necessarily,

the compensation scheme, s(x), is (locally) convex.12 Now, as

s(x) =
1

r
ln



































λ + µa[rC
′(a) +

(x − Ex |a, qp )fa(a, qp)

σ2h(qp)
]

+µqp

[

−1
2h′(qp)/h(qp)

]

+µqp

1
σ2h(qp)

{x − Ex |a, qp }
[

fqp(a, qp) − 1
]

+µqp

1
2

h′(qp)
h(qp)

1
σ2h(qp)

[x − Ex |a, qp ]2



































+ C(a) +
1

r
ln(r)

it follows that

s′(x) =
1

r
k̂(x)

(

µa
fa(a, qp)

σ2h(qp)
+ µqp

(fqp(a, qp) − 1)h(qp) + (x − f(a, qp) − (q − qp))h
′(qp)

σ2h(qp)2

)

,

where

k̂(x) =













λ + µa[rC
′(a) +

(x − Ex |a, qp )fa(a, qp)

σ2h(qp)
] + µqp

[

−1
2h′(qp)/h(qp)

]

+µqp

1
σ2h(qp)

{x − Ex |a, qp }
[

fqp(a, qp) − 1
]

+µqp

1
2

h′(qp)
h(qp)

1
σ2h(qp)

[x − Ex |a, qp ]2













−1

.

11Also, the Mirrlees problem no longer exists.

12We henceforth assume the compensation contract given by (8) does not violate the limited liability constraint

– this turns out to be the case in our examples.
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As k̂(x) is the inverse of the agent’s marginal utility, it follows that k̂(x) > 0, ∀x. This implies

that the slope of the compensation scheme, when evaluated at the mean f(a, qp) + (q − qp), is

s′(Ex |a, qp ) =
1

r
k̂(Ex |a, qp )

(

µa
fa(a, qp)

σ2h(qp)
+ µqp

fqp(a, qp) − 1

σ2h(qp)

)

,

which is positive since (for any optimal qp)
13

fqp(a, qp) > 1,

i.e., the marginal return from investment in the productive technology is larger than the marginal

return from investing in the risk-free asset (marginal cost of capital).

As demonstrated by Holmström (1979) it is the informativeness of the outcomes that de-

termines pay. Locally – around the mean – lower outcomes signal the agent slacked off and/or

underinvested and thus locally, lower outcomes are considered bad news regarding effort and

investment decisions. In contrast, low as well as high outcomes – far from the mean – signal

that the agent undertook the (desired) risky investment. That is, the shape of the compensation

function is caused by the fact that “extreme” outcomes signal the agent undertook the (desired)

risky investment and the location is caused by the fact that around the mean, higher outcomes

signal the agent undertook the desired productive effort and investment. As the sign of s′′(x)

is determined by a second-degree polynomial in x, it follows that the optimal compensation

contract takes the form of a “butterfly”. That is, s(x) is symmetric, convex in a neighborhood

around the minimum, and concave in the tails.

Conveniently it turns out that optimal compensation is fundamentally unaffected by the

agent’s market alternative.

Proposition 2 Given interior solutions, the optimal contract is unique up to a positive con-

stant.

Proof. Let s(x) be an optimal solution for reservation utility level R = − exp{−rRCE}. Assume

the agent’s reservation certainty equivalent is instead RCE +∆. The agent’s certainty equivalent

of the compensation scheme s(x) + ∆ is RCE + ∆ and thus the individuel rationality constraint

is satisfied. As the agent’s preferences display no wealth effects, the incentive compatability

constraints are both satisfied. Hence, s(x) + ∆ is feasible. Assume a compensation scheme ŝ(x)

entails a higher expected net payment to the principal relative to s(x) + ∆. As ŝ(x) − ∆ is

feasible for reservation certainty equivalent RCE , s(x) cannot be optimal, a contradiction.

13Also, if the compensation scheme is decreasing around the mean, the agent’s first-order condition regarding

effort cannot be satisfied.
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Note, the result holds regardless of whether the first-order approach is valid. Again, as there

are no wealth effects we can rewrite the compensation function:

s(x) =
1

r
ln(λ) +

1

r
ln



































1 + µa

λ [rC ′(a) +
(x − Ex |a, qp )fa(a, qp)

σ2h(qp)
]

+
µqp

λ

[

−1
2h′(qp)/h(qp)

]

+
µqp

λ
1

σ2h(qp)
{x − Ex |a, qp }

[

fqp(a, qp) − 1
]

+
µqp

λ
1
2

h′(qp)
h(qp)

1
σ2h(qp)

[x − Ex |a, qp ]2



































+C(a) +
1

r
ln(r),

which is convenient for our numerical examples as we can concentrate on µ̂a = µa/λ, and

µ̂qp = µqp/λ and subsequently add a constant to satisfy individual rationality.

4.1 Numerical results

In our numerical examples, we consider a production function of the form

f(a, qp) = k
(

aαqβ
p

) 1

α+β ,

where k is a general productivity scaling parameter, α is the (not-normalized) marginal pro-

ductivity of effort, whereas β is the (not-normalized) marginal productivity of investment. We

consider the base case parameters in Table 1.

Description symbol value

marginal productivity of effort α 2

marginal productivity of production β 6

scale of production k 2.0

agent’s absolute risk aversion r 0.1

variance of random shock σ2 10.5

production induced variance of outcome h(qp) q
1/4
p

agent’s cost of effort C(a) a2

Table 1: Base case parameters for the numerical examples.

Thus, the production function becomes

f(a, qp) = 2a1/4q3/4
p .

In order to get a picture of the importance of the agency costs, we derive the first best solution

in our base case. It turns out that it is optimal to have effort a = 0.84375 and investment

qp = 4.27148, which yield a value to the principal of 0.711914. This is the principal’s value if effort

and investment level are contractible. Inasmuch as the agent has no direct cost of productive

10



investment in this case, he does not need to be compensated for undertaking investments. Hence,

the principal only has to compensate the agent for undertaking the desired effort level which is

obtained by paying the agent a constant salary, such that his individual rationality constraint

is satisfied.

We now consider the second best solution in our base case, i.e. the principal must offer the

agent a contract in order to appropriately induce effort and productive investment. The optimal

combination of effort and investment choice is a = 0.400 and qp = 2.35, respectively, and the

second best solution yields a value to the principal equal to 0.378759.14 Thus, when the principal

has to induce effort as well as investments both are significantly decreased and, unsurprisingly,

the principal obtains a much lower value. The optimal contract inducing the specified effort

and investment decision is depicted as light gray in Figure 2(a) and, as previously argued, the

compensation scheme has the butterfly form.

In Figure 2(a) we also depict a case of higher risk aversion, r = 0.2. In this case, we

plot the optimal contract as well as the “conditional” contract, i.e. we fix (a, qp) = (0.4, 2.35)

from the case of r = 0.1. The optimal contract induces (a, qp)r=0.2 = (0.275, 1.70). It is clear

that a higher risk aversion makes the agent more sensitive to the uncertainty of the outcome

and, hence, the agent must in particular be compensated for undertaking a (high) productive

investment level (qp = 2.35) since investments directly influences the variance of the outcome.

In the ex ante problem faced by the principal it is therefore better to induce a lower level of

effort and investment, which on the one hand decreases the expected outcome, but on the other

hand decreases the expected payment to the agent. As a result the increase in the risk aversion

decreases the principal’s value from 0.378759 to 0.271829.15 In Figure 2(b) we consider a further

increase in the risk aversion and we depict the optimal contracts when r ∈ {0, 1, 0.2, 0.3}. In the

latter case, it is optimal for the principal to induce an even lower effort and investment level,

(a, qp) = (0.225, 1.20), and his value decreases accordingly to 0.217376.

In order to study the effect of the production variance function h(qp) we consider two choices

in Figure 2(c), where we fix effort to a = 0.25 and production to qp = 1.0. In the first case,

h(qp) = h = q4
p, in the other case h(qp) = h = q

1/4
p . Thus, given this choice of (a, qp), the

mean (0.414214) and the standard deviation (3.24037) of the distribution of the outcome x is

independent of h. In the former case, the principal’s value is 0.284945, whereas it is 0.286312

in the latter case. Figure 2(c) reveals that the compensation scheme is very sensitive in the

uncertainty induced by risky productive investments, ceteris paribus. Clearly, the more concave

14The normalized Lagrange multipliers associated with inducing effort, a = 0.400, and investment, qp = 2.35,

are µa/λ = 0.34461418 and µqp
/λ = 0.75547044, respectively.

15The principal’s value with the conditional contract is 0.208232.
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(a) (Conditional) optimal contracts for two de-

grees of risk aversion, r; the standard deviations

are from the case r = 0.2 “inopt” marks the case

of fixed effort and production
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(b) Optimal contracts for various degrees of risk

aversion, r; the standard deviations are from the

case r = 0.3
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(c) Contracts for two types of variance functions

h. The same pair (a, qp) = (0.25, 1.0) is induced in

both cases.
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(d) Contracts for three types of production function

scaling k when r = 0.3. The vertical lines mark ±

two standard deviation when k = 2.3 and k = 2.5

(slightly dashed). “inopt” marks the case of fixed

effort and production.

Figure 2: Compensation contract, s(x), and the density of the outcome, g(x|a, qp) (g is scaled by 10).

“o” marks the mean of x, “|” marks one unit of standard deviation.
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is the production variance function, the less expensive it is for the principal to induce the agent to

implement a higher choice of productive investment. The optimal contracts for the two choices

of h are (a, qp)h=h = (0.25, 0.80) (principal’s value = 0.295934) and (a, qp)h=h = (0.40, 2.35)

(principal’s value = 0.378759), respectively. Thus, a more concave production variance function

makes it optimal for the principal to induce a higher level of productive investments.

In Figure 2(d) we consider the effect of increasing production profitability, i.e. we increase the

scaling of the production function, k (we have kept r = 0.3). Hence, fixing effort and production,

the mean increases while the variance, h(qp)σ
2, and the effort cost, C(a), are unchanged. This

exercise is specifically plotted as the light gray curve in Figure 2(d). That is, we start out

with k = 2 where the optimal contract induces (a, qp) = (0.225, 1.450) and the principal’s

value is 0.217397 (medium gray curve). In this case the mean is 0.370127 and the standard

deviation is 3.39442. We then increase production profitability to k = 2.3 but keep effort

and production unchanged. Higher production profitability increases the principal’s value to

0.528658, the mean to 0.643146 while the standard deviation is unchanged at 3.39442. However,

as seen in the figure, the compensation schedule is “shifted” to the left. Now, if we consider the

optimal contract for k = 2.3, then the pair (a, qp) = (0.525, 4.50) is induced. As a result the

mean increases to 1.54891, the standard deviation to 3.91063, the principal’s value to 0.907119,

and the compensation schedule is “shifted back” (dark curve). Finally, we increase production

profitability even further to k = 2.5 which yields the optimal compensation schedule plotted as

the dashed curve in Figure 2(d). In this case, (a, qp) = (1.15, 11.50), the mean is 4.66731, the

standard deviation is 4.39726, and the principal’s value is 2.31283.16

After we have seen some of the key comparative static effects, we now turn to consider

various restrictions on the compensation.

5 Restrictions on the incentive function

When the investment level is unobservable, low as well as high outcomes are rewarded in order

to induce risky investments. In principle, there is nothing wrong with rewarding low outcomes,

however, if the agent can destroy output, rewarding low outcomes is not a viable approach, see

Dye (1988). Also, rewarding high as well as low outcomes may invite overinvestment. To see

this, consider that compensation looks as in Figure 3.

16Of course, the first best solution is independent of variations in risk aversion and variance. However, k

directly influences the production profitability and, hence, changes the first best solution. When k = 2.3 we

obtain (a, qp)FB = (1.47572, 13.0666) and the principal’s value is 2.17776 and when k = 2.5 we obtain (a, qp)FB =

(2.05994, 25.46) and the principal’s value is 4.24334.
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Figure 3: Compensation contract, s(x).

Hence, it is obvious that the agent prefers to overinvest if overinvestment leads to extreme

variance. Also, overinvestment is preferred if it leads to low expected outcome, i.e., when

overinvestment – in expectation – constitutes destruction of outcome.17 Thus, if the agent can

access the capital market without the principal observing it, the contract cannot be symmetric

as depicted – though it could well be decreasing on some interval(s). If we solve the problem

assuming non-decreasing compensation, the compensation scheme will look as in Figure 4 (the

multipliers are not necessarily identical to the multipliers in the solution where the slope is

unrestricted).
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Figure 4: Compensation contract, s(x), in the case of non-negative slope.

Depending on where the endpoint of the flat part of the compensation function is located,

the strictly increasing part can be both locally convex and locally concave. In this case it is

not the limited liability constraint which introduces flat spots in the contract. Instead it is

caused either by the fact the agent can destroy output or by the fact the agent can overinvest.

17That is, although he agent’s problem is locally concave around the optimal effort and investment levels

identified in (1), the agent’s problem is generally unbounded in qp given an incentive scheme of the type depicted

in figure 1.
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Regardless, the contract is still (locally) convex.

6 Piecewise linear compensation functions

Option contracts resemble the optimal non-decreasing contracts. However, contrary to an option

contract the optimal nondecreasing contract is concave in the upper tail. Still, it is potentially

interesting to assess the loss in efficiency connected to issuing options instead of offering an

optimal contract. If we assume a piecewise linear compensation function of the form

s(x) =











s′̄ ; x ≤ s′̄ − κ0

κ1
,

κ0 + κ1x ; x >
s′̄ − κ0

κ1
,

then the agent’s expected utility is

E[U(s(x); a); qp] =

∫
s
¯
′−κ0
κ1

−∞

− exp{−r(s
¯
′ − C(a))}g(x |a, qp) dx

+

∫ ∞

s
¯
′−κ0
κ1

− exp{−r(κ0 + κ1x − C(a))}g(x |a, qp) dx.

Now,

exp{−r(κ0 + κ1x − C(a))}g(x |a, qp)

= exp{−r(κ0 + κ1x − C(a))} 1

h(qp)
1

2 σ
√

2π
exp{−1

2

(x − f(a, qp) − (q − qp))
2

σ2h(qp)
}

= exp{−r(κ0 + κ1[f(a, qp) + (q − qp)] −
1

2
rκ2

1σ
2h(qp) − C(a))}

× 1

h(qp)
1

2 σ
√

2π
exp{−1

2

(x − [f(a, qp) + (q − qp) − rκ1σ
2h(qp)])

2

σ2h(qp)
},

which implies that

E[U(s(x); a); qp] =

− exp{−r(s′ − C(a))}
∫

s
¯
′−κ0
κ1

−∞

1

h(qp)
1

2 σ
√

2π
exp{−1

2

(x − f(a, qp) − (q − qp))
2

σ2h(qp)
}dx

− exp{−r(κ0 + κ1[f(a, qp) + (q − qp)] −
1

2
rκ2

1σ
2h(qp) − C(a))}

×
∫ ∞

s
¯
′−κ0
κ1

1

h(qp)
1

2 σ
√

2π
exp{−1

2

(x − [f(a, qp) + (q − qp) − rκ1σ
2h(qp)])

2

σ2h(qp)
}dx.

That is, expected utility can be written as

E[U(s(x); a); qp] = U(s
¯
; a)P

(

x ≤ s′̄ − κ0

κ1

)

+ U(κ0 + κ1[f(a, qp) + (q − qp)] −
1

2
rκ2

1σ
2h(qp); a)P

(

y ≥ s′̄ − κ0

κ1

)

,

where

y ∼ N(f(a, qp) + (q − qp) − rκ1σ
2h(qp); h(qp)σ

2).
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6.1 Numerical results

Let us again turn to our base case from Table 1. We now employ the restricted contract – i.e.

an option-like contract – in our base case example. Solving the second best case yields that the

following restricted contract is “optimal”:

s(x) =







−1.76421 ; x ≤ −2.75485

−0.25036 + 0.549522x ; x > −2.75485
.

This contract is depicted in Figure 5(a). The contract induces an effort level of a = 0.410 and

an investment level of qp = 2.40. The induced pair of effort and productive investment is close

to the solution with the unrestricted contract. Comparing the optimal unrestricted contract to

the optimal piecewise linear contract, which is done Figure 5(b), shows that the compensation

schemes are quite similar in the two cases when we consider the outcome region defined by ±2

times the standard deviation around the mean. Employing the optimal unrestricted contract

yields an expected compensation cost of 0.290121, whereas the optimal piecewise linear contract

carries an expected cost of 0.307849. In the option-like case the principal’s value is 0.378069

which is only slightly lower than the principal’s value, 0.378759, from the unrestricted case.

Hence, at lest in this particular example it seems not much is lost by restricting the contractual

form.
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(a) Compensation contract s(x) and the density of

the outcome g (scaled by 10). “o” marks the mean

of x, “|” marks one unit of standard deviation.
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(b) Compensation contracts, sgen(x) for the unre-

stricted contract and spwl(x) (dashed) for the case

of a piecewise linear contract.

Figure 5: Compensation schemes in the case of a piecewise linear (option-like) contract. The base case

parameters from Table 1 are used.
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6.2 Incentive measures

The recent financial literature on the valuation of executive stock options often consider how

to measure incentives. A commonly used measure is the sensitivity of the option value or the

certainty equivalent to changes in current stock price.

In order to study the validity of the above measure, we consider the following exercise.

Previously we have solved for the optimal piecewise linear contract which induces the manager to

undertake (a, qp) = (0.41, 2.4), see Figure 5. We now allow the principal to offer the agent another

option-like contract with a higher slope. This alternative contract should provide the manager

with better incentives according to the commonly used incentive measure. The contracts are

depicted in Figure 6, where the former contract is denoted “optimal” and an example of the

latter contract is denoted “inoptimal”. Clearly, the latter contract has higher incentives as

measured by the slope. Also, the latter contract is designed such that (i) both contracts become

increasing at the same level of output and (ii) if the agent undertakes (a, qp) = (0.41, 2.4), then

his expected utility is equal to his reservation utility (= −1). If the incentive measure is valid,

the agent should undertake an effort and productive investment choice such that, at the very

least, the principal is not worse off with the alternative contract. Now, if the principal provides

the agent with the alternative contract, the agent undertakes (a, qp) = (0.7281, 3.74). Thus,

the agent increases effort and productive investments. In this case, the agent has an expected

utility of −0.989587 which is higher than his reservation utility equal to −1. Interestingly, the

expected output is E(x|a = 0.7281, qp = 3.74) = 1.23, whereas the contract solved for in the

previous section yielded a lower expected output of E(x|a = 0.41, qp = 2.4) = 0.69. However,

the expected compensation to the agent is higher in the case of the contract with the high

slope (0.308 versus 1.26). The increase in the expected compensation to the agent more than

trade offs the increase in the expected outcome. In other words, albeit the slope is higher (and

the expected outcome is higher, too), i.e. the incentives are measured to be higher with the

commonly used measure, the alternative contract is inoptimal for the principal.18

7 Additional information

In the analytical literature concerning models of executive compensation it is widely acknowl-

edged that remuneration should contain a relative performance element. Holmström (1982)

predicts that systematic risk will be filtered out through relative performance evaluation and a

similar conclusion is reached by Mookherjee (1984), Dye (1992), and Demski and Sappington

18In fact, the principal’s value decreases from 0.378 to −0.034.
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Figure 6: Piecewise linear compensation contracts: “optimal” is the optimal contract inducing (a, qp) =

(0.41, 2.4). The contract “inoptimal” has a higher slope, but the contract is not optimal.

(1984). Given models such as the Capital Asset Pricing Model and the Arbitrage Pricing Theory

one would expect equity incentives to display an element of relative performance evaluation. For

example Abowd and Kaplan (1999) make the observation:

“Stock options reward stock price appreciation regardless of the performance of the economy

or sector. ... If the exercise price could be linked to measures like the S&P 500, or an index

of close product-market competitors, then executives could be rewarded for gains in stock price

in excess of those explainable by market factors outside their control. If market-wide stock

movements could be netted out of executive incentive schemes, then equivalent incentives could

be provided while reducing the volatility of executive’s portfolios.” (p.162)

The underlying argument is that relative performance evaluation reduces the risk premium

and thus is efficient. While relative performance evaluation seems relatively uncommon it might

well be taking place. One possibility is the agent via his personal account hedges the systematic

risk component in his compensation. Another possibility is the relative performance evaluation

takes place through the unobservable part of the incentive arrangement – layoff decisions, future

option grants, and discretionary fringe benefits could depend on relative performance.

Holmström (1979) determines the necessary and sufficient condition for relative performance

evaluation to be efficiency enhancing, and although the condition contains little predictive power

as to how additional information should enter, it is very precise regarding what information

should enter the performance contract. As hitherto we assume

x̃ = f(a, qp) + h(qp)
1

2 ǫ̃ + q − qp.

However, in addition we assume ǫ̃ = θ̃ + γ̃ where θ̃ is a random component affecting the mar-

ket or the particular industry in which the company is operating and γ̃ is idiosyncratic noise.
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Furthermore, θ̃ ∼ N(0, σ2
θ), γ̃ ∼ N(0, σ2

γ), and cov(θ̃, γ̃) = 0. Similarly, let

ỹ = θ̃ + ξ̃

be the unanticipated change in the value of the market portfolio, the unanticipated change in a

competitor’s market value, or the unanticipated change in an industry index, where ξ̃ ∼ N(0, σ2
ξ ),

where cov(θ̃, ξ̃) = 0, and where cov(γ̃, ξ̃) = 0.19 It follows that





x̃

ỹ



 ∼ N





Ex̃ |a, qp

Eỹ
, Σ(qp)



 ,

where

Σ(qp) =





h(qp)(σ
2
θ + σ2

γ) h(qp)
1

2 σ2
θ

h(qp)
1

2 σ2
θ σ2

θ + σ2
ξ



 .

The joint density function is:

g(x, y |a, qp) = (2π)−
1

2 |H(qp)|
1

2

exp{−1

2





x − Ex̃ |a, qp

y − Eỹ





t

H(qp)





x − Ex̃ |a, qp

y − Eỹ



},

where H(qp) = Σ(qp)
−1 is the 2 × 2 precision matrix and |H(qp)| denotes the determinant. It

follows that

ga(x, y |a, qp)

g(x, y |a, qp)
=

∂

∂a











−1

2





x − Ex̃ |a, qp

y − Eỹ





t

H(qp)





x − Ex̃ |a, qp

y − Eỹ















=
1

|Σ(qp)|
fa(a, qp)

[

(x − f(a, qp) − (q − qp))(σ
2
θ + σ2

ξ ) − h(qp)
1

2 σ2
θy

]

=
1

|Σ(qp)|
fa(a, qp)(σ

2
θ + σ2

ξ ) [x − Ex̃ |a, qp, y ] ,

and that

gqp(x |a, qp)

g(x |a, qp)
= −1

2
h′(qp)/h(qp)

+
1

|Σ(qp)|
(fqp(a, qp) − 1)

{

(x − Ex̃ |a, qp )(σ2
θ + σ2

ξ ) − h(qp)
1

2 σ2
θy

}

+
1

2

1

|Σ(qp)|
h′(qp)

h(qp)
(x − Ex̃ |a, qp )

{

(x − Ex̃ |a, qp )(σ2
θ + σ2

ξ ) − h(qp)
1

2 σ2
θy

}

= −1

2
h′(qp)/h(qp)

+
1

|Σ(qp)|
(σ2

θ + σ2
ξ )(fqp(a, qp) − 1)(x − Ex̃ |a, qp, y )

+
1

2

1

|Σ(qp)|
h′(qp)

h(qp)
(σ2

θ + σ2
ξ )(x − Ex̃ |a, qp )(x − Ex̃ |a, qp, y ).

19If the interpretation is that of a competitor, the competitor’s payoff, x̃C , is given by x̃C = µC + θ̃ + ξ̃.
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It is obvious that the additional information, y, enters the compensation function and from

(8) it is known that compensation is monotone in the weighted sum µaga/g + µqpgqp/g. Locally

around the conditional mean, Ex̃ |a, qp, y , higher outcomes are still considered a signal the

agent worked hard and invested as instructed. Hence, the agent is clearly benchmarked against

peer or market performance, y. Immediately one might expect the squared difference between

observed outcome and conditional mean would enter compensation as in (8). This turns out to

be erroneous. Compensation depends on the difference between outcome and the unconditional

mean multiplied by the difference between outcome and the conditional mean,

(x − Ex̃ |a, qp )(x − Ex̃ |a, qp, y ).

Outcomes between the two means are considered bad news, whereas outcomes that are extreme

relative to the two means are considered good news. Assume for the moment Ex̃ |a, qp, y >

Ex̃ |a, qp . The interpretation of the benchmark, y > 0, is the common noise component, θ̃, is

positive

Eθ̃ |y =
σ2

θ

σ2
θ + σ2

ξ

y.

Given the common noise component is positive, the expected deviation from the unconditional

mean is

Eh(qp)
1

2 θ̃ |y =
h(qp)

1

2 σ2
θ

σ2
θ + σ2

ξ

y.

Hence, an outcome above the unconditional but below the conditional mean is a sign investment

(h(qp)
1

2 ) is too low. Extreme values above the conditional mean are still considered a sign

the agent invested, as are outcomes below the unconditional mean. Benchmarking is clearly

taking place, however, given any y truly extreme firm specific outcomes are still considered good

news concerning investment. One message in Holmström (1979) is the additional information,

y, should enter the performance evaluation, provided x is not a sufficient statistic for x and y

with respect to effort and investment. In our situation this seems a relatively innocent result,

however, it has far reaching implications. The agent should be benchmarked against his peers

and/or market performance and compensation should contain an element that depends on the

product between the conditional and the unconditional mean. It might be possible for the agent

to take care of the benchmarking part on his personal account, however, it is harder to see how

the agent could deal with the latter part of the performance evaluation statistic - or even be

given incentives to do so. Thus it seems Abowd and Kaplan (1999) have a point.
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8 Conclusion

We study how the firm’s equity holders should optimally reward the the manager for his work.

A central question in our paper is to consider when it is optimal for the firm owners to provide

the manager with an option-like contract. Empirically, such contracts play an important role,

but a number of recent papers dispute whether the granting of option compensation to managers

is worth the equity holders’ while.

In order to analyze optimal compensation we apply a principal-agent setting. However, in

the standard principal-agent framework, it is only the manager’s choice of action or effort which

is non-contractible. In our version of the standard setting, it is a limited liability constraint

which introduces a convexity-like feature in the manager’s contract. We argue, however, that a

key element in optimal compensation is to take the manager’s investment problem into account.

Therefore, we extend the principal agent model to include effort as well as investment choice

by the manager. The introduction of a productive investment choice leads to an induced moral

hazard problem, because the equity holders have a dichotomy in providing the manager with

the appropriate incentives for choosing effort and investment.

In our setting we show that it is not necessary to impose limited liability on the manager

in order to obtain optimal convex-like compensation. As a function of the firm’s output, the

optimal compensation to the manager is increasing in an interval surrounding the expected

output. However, since a sufficiently bad outcome is a sign that the manager undertook a

high desired production choice, the manager’s compensation is decreasing for low outcomes. If

the manager can destroy output (or overinvest), it is necessary to let compensation be non-

decreasing in output. In that case, the shape of the restricted (optimal) compensation function

is closely related to providing the manager with a call-option on output. We further restrict

the compensation to be piecewise linear. In our numerical examples, we illustrate that this

additional restriction does not seem to be very costly ex ante. That is, we have provided a

rationale for option compensation when the manager also undertakes a productive investment

choice.

Furthermore, in the recent financial literature on equity based pay, an often applied measure

of the manager’s incentives is the sensitivity between the manager’s certainty equivalent and

the current output (the stock price). In an example, we illustrate that incentive measures

along such lines may provide the wrong insight as regards the manager’s incentives. In fact,

providing stronger “incentives” with the often used financial incentive measure turns out to lead

to inoptimal effort and investment choice. This is costly ex ante.

Finally, we also consider the effect of additional information such that output noise stems
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from market risk and idiosyncratic risk. This has implications for benchmarking the agent. We

demonstrate that the agent should be benchmarked against market performance (or his peers)

and, in addition, the compensation to the agent should contain an element depending on the

product between the conditional and the unconditional mean. That is, optimal benchmarking

is potentially quite complicated.
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