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RETURN GUARANTEES WITH DELAYED PAYMENT

Abstract. A unit–linked insurance contract can be formulated in terms of a guar-
anteed amount together with a fraction of a positive excess return of a benchmark
portfolio. Normally, the excess return is determined annually and accumulated until
the maturity of the contract. The accumulation factor which is granted with respect
to the delayed payments can either be deterministic or equal to the (stochastic)
bank account. It turns out that the common choice of a deterministic accumulation
factor gives rise to problems concerning the pricing and the risk management of
the insurance contract.
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1. Introduction

Past difficulties with the financial derivatives embedded in life insurance contracts
are in part due to the fact that the classical actuarial approach, i.e. valuing liabilities
by discounting expected payouts with a fixed interest rate, is not applicable. Tradi-
tionally one could justify the use of expected payouts by the law of large numbers,
i.e. for a company with a large number of policies outstanding, the mortality tables
reflect nearly deterministic proportions rather than probabilities. This is not true for
claims depending on one or few underlying financial variables. Rather, an approach
based on arbitrage arguments of the type pioneered by Black and Scholes (1973a)
is required. Thus “fair valuation” becomes “pricing by arbitrage” where the embed-
ded options are concerned. This was recognised early on by Brennan and Schwartz
(1976, 1979) and Boyle and Schwartz (1977).

We consider a contract (or savings plan) where the payoff can be formulated in
terms of a guaranteed amount together with a fraction of a positive excess return on
the basis of a benchmark portfolio. In particular, the excess return is linked directly
to the level of a product which is traded at a financial market, such as a mutual
fund, a certain stock, a foreign currency, etc. Important examples involving such a
contract situation are known as unit–linked insurance contracts with minimum return
guarantees. References to unit–linked contracts with minimum return guarantees are
Bacinello and Ortu (1993), Nielsen and Sandmann (1996, 2002) , Boyle and Hardy
(1997), Grosen and Jørgensen (1997), Bacinello (2001) and Miltersen and Persson
(2003). These papers are concerned with the valuation of different types of minimum
return guarantees. They all hold in common the use of martingale pricing theory
based on the works of Harrison and Kreps (1979) and Harrison and Pliska (1981).

However, the above literature is mainly concerned with the correct valuation. Along
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the lines of Mahayni and Schlögl (2003) we are also concerned with the risk manage-
ment under model misspecification and model risk. The hedging needs close attention
for various reasons. The risk management affects the default of the underwriter as
well as the benefits to the insured. The contracts have a long time to maturity which
also gives a hedging problem. Thus, the robustness of hedging strategies against
model misspecification can be seen as a necessary requirement.

The main focus of this paper is the delayed payment structure of the return guaran-
tees. For example, in Germany the excess return of a unit–linked insurance contract
is delayed until contract maturity. In particular, it is often deferred without interest.
In general, an interest rate can be granted for the lag–time. This can be modelled
in terms of an accumulation factor which can either be deterministic or stochastic in
the sense that it coincides with the bank account prescribed by the future spot rates.

In particular, the payoff of the contract under consideration depends on the deci-
sion of how the time delay is honored in terms of an accumulation factor. In the case
of a deterministic factor the interest rate granted for the time delay is known at the
inception of the contract. One motivation of this might be to avoid any additional
randomness introduced by a stochastic accumulation factor. An insurance company
might be tempted to think that it is easier to handle a contract where the accumula-
tion factor is deterministic, in particular if the size is fixed in a conservative manner.
In the following, we use standard theory from financial economics to show that just
the opposite is true.

Although the main motivation of this paper stems from the analysis of unit–linked
life insurance contracts, the results are also valid for investment strategies with min-
imum return guarantees. In a more general or abstract setup our results become of
principal importance as soon as the final payoff can be decomposed into a sum of
periodic payments which are delayed until the maturity of the contract. This is a
common feature of many investment strategies actually offered to investors.

In financial terms, the embedded derivatives are given by forward starting near the
money options where the payoff is delayed to the maturity of the contract. It is shown
that a deterministic accumulation factor implies an additional convexity correction.
This is explained by the theory of pricing by no arbitrage. Within a complete fi-
nancial market, the no–arbitrage price of a contingent claim can be expressed as the
expectation of the discounted payoff under the so–called risk neutral measure. In the
case of a stochastic bank account, the price of the time delay is exactly compensated.
Therefore, the embedded option is easily interpreted as an option without time delay.
In the case of a deterministic accumulation factor, the size of the additional convex-
ity adjustment is proportional to the initial forward rate. Furthermore, the excess
return is a non–linear function of the benchmark index. Therefore, the convexity
adjustment also depends on the correlation of the excess returns and the future spot
rates. The higher the correlation, the higher the required compensation will be.

In order to analyze the hedging and robust hedging of the contracts, it is conve-
nient to interpret the embedded options as exchange options. The underlying pseudo
assets depend on the choice of the accumulation factor. If the accumulation factor is
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deterministic, these assets are neither necessarily traded nor necessarily observable.
With respect to a complete market, for example in a Black/Scholes–type setup, these
assets can easily be synthesized. In the case of a stochastic bank account, the re-
sulting strategy for the option is still a Black/Scholes–type strategy. This is not the
case if the accumulation factor is deterministic. The well known robustness results
of Black/Scholes–type strategies are not valid for the hedging of a delayed payment
option with a deterministic accumulation factor. This is even more important with
regard to the high degree of model risk due to the long time to maturity of the fi-
nancial products under consideration.

The paper is organized as follows. Sec.2 gives the contract design. Sec.3 uses the rich
toolbox of financial economics for pricing the insurance contract under consideration,
i.e. the delayed payment options. Sec.4 analyzes the implications for the fair contract
parameters. These are the participation rate specifying the fraction of excess return
granted to the insured and the guaranteed rate determining the guaranteed amount.
It turns out that a deterministic accumulation factor is not necessarily compatible
with a fair participation rate between zero and one which is normally the intention
of the contract design. Of course, this is due to the loss incurred by the delayed
payments. Sec.5 studies the deterministic accumulation factor which offsets the ef-
fect of the time delay. In particular, the factor is represented as an adjustment of
the forward price of a zero coupon bond where the direction of the adjustment is de-
termined by the correlation of the spot rate and asset prices. The risk management
of the insurance contracts under consideration is analyzed in sec.6. In particular,
the implications of so–called model risk are discussed. Finally, sec.7 concludes the
paper.

2. Contract specification

For simplicity, we assume that the investor pays a constant periodic premium A.
τ = {t0, . . . , tN−1, tN} denotes the set of reference dates. The maturity date of the
contract is indicated by tN . With respect to an insurance contract, the time between
two trading dates is equal to one month or one year. In this case, one can think of
tN as the ”time of retirement” when premium payments cease and in the simplest
case, the accumulated funds are paid out as a lump sum. In particular, the insured
pays the amount A at each time ti (i = 0, . . . , N − 1).
The payoff which the policy holder receives at time tN is given in terms of a guaran-
teed part G together with a bonus account B. The guaranteed part G resembles an
insurance account where each premium A is invested according to a guaranteed rate
g, i.e.

(1) GtN = eg(tN−tN−1)ÃtN−1
, where Ãti :=

i
∑

j=0

Aeg(ti−tj), i = 0, 1, . . . , N − 1.

The bonus account B is determined by the excess returns which are based on a
benchmark portfolio. In particular, we assume that the surplus which is observed
from ti up to ti+1 for i = 0, . . . , N−1 is premised on the comparison of two investment
alternatives. The premium which is paid until ti, i.e. the insurance account Ãti , can
either be used to buy the benchmark index S or to invest according to the guaranteed
rate g. Thus, the excess return is composed of the positive part of the difference of
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t0 ti+1ti tN· · · · · ·

excess return is observed
[

Sti+1

Sti

− eg(ti+1−ti)
]+

-

[

Sti+1

Sti

− eg(ti+1−ti)
]+

β̄ti+1,tNdelayed to tN

Figure 1. Delayed payment.

Ãti

Sti

Sti+1
and Ãtie

g(ti+1−ti), i.e. the ti up to ti+1 excess return is given by

Ãti

[

Sti+1

Sti

− eg(ti+1−ti)

]+

It is worth mentioning, that in Germany the excess return is, although observed
at ti+1, delayed until the contract maturity tN . In particular, it is often deferred
without deigning an interest rate. However, we assume that an interest rate can be
granted for the lag–time. This is modelled in terms of an accumulation factor β̄ti+1,tN ,
c.f. Figure 1. Before we comment on β̄, we finish the contract specification by the
observation that only a fraction α (0 ≤ α ≤ 1), the so called participation rate, of
the excess returns is granted to the customer. Thus the payoff at time tN in terms
of the bonus account amounts to

(2) BtN := α

N−1
∑

i=0

Ãti β̄ti+1,tN

[

Sti+1

Sti

− eg(ti+1−ti)

]+

.

To sum up, the investment contract is defined by the contributions of the policy
holder and the insurer, i.e. the periodic premium A and the final payoff I(tN) which
is defined by

(3) I(tN) := GtN + BtN

where GtN and BtN are given by equation (1) and equation (2).

Notice that the reference portfolio S is fixed a priori. Thus the payoff granted at
maturity tN depends on the one hand on the choice of the accumulation factor β̄ and
on the other hand on the contract parameters α and g.

A few comments are necessary in order to explain the significance of the accumulation
factor β̄. Basically, it can either be determined at the initialization of the contract,
or it can be based on the future spot rates. Thus, with respect to the accumulation
factor β̄, we like to consider the following basic scenarios:

(a) β̄ coincides with the stochastic bank account, i.e.

β̄ti,t = exp

{
∫ t

ti

ru du

}

∀ ti < t, ∀ t ≤ T,

where r = (rt)0≤t≤tN denotes the continuously compounded spot rate.
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(b) β̄ti,t can be expressed by a guaranteed interest which is not necessarily equal to
g but given by a deterministic function In particular, this includes no interest,
i.e. β̄ti,t = 1.

As our paper will show, the choice of β̄ plays an important role in the valuation and
risk management of the insurance contract. In order to distinguish between these
scenarios, we will use the convention that in scenario (a) an accumulation factor is
given in terms of the stochastic bank account, while scenario (b) denotes the deter-
ministic accumulation factor including the case of no interest.

The first question which presents itself is how to specify a fair contract, i.e. how
to specify the fair contract parameters α∗ and g∗ for a given periodic premium A.
The so–called equivalence principle states that a contract is fair if the present value of
the contributions is equal to the present value of the benefits. Let D(t0, t) denote the
discount factor with time to maturity t − t0. The present value of the contributions
of the policy holder is given by

A

N−1
∑

i=0

D(t0, ti).

The benefits to the insured, i.e. I(tN) given by equation (3), consist of a deterministic
part with present value

D(t0, tN)ÃtN−1
eg(tN−tN−1)

and a random payoff B which is given in terms of call–options on the benchmark
index S.1 Therefore, to calculate the fair price of the embedded options, we use
standard theory from financial economics which is based on arbitrage arguments. Let

C
(i)
t (i = 0, . . . , N − 1) denote the arbitrage–free price a t ∈ [0, tN ] of an European

contingent claim where the payoff at contract maturity T = tN is given by

(4) C
(i)
tN

:= β̄ti+1,tN

[

Sti+1

Sti

− eg(ti−1−ti)

]+

.

It follows that a fair contract specification (α, g) depends on the arbitrage free t0–

option prices C
(i)
t0

and is given by the solution of

A

N−1
∑

i=0

D(t0, ti) = D(t0, tN)ÃtN−1
eg(tN−tN−1) + α

N−1
∑

i=0

ÃtiC
(i)
t0

.

It is worth emphasizing that the determination of ”fair” prices according to standard
theory is justified by the existence of hedging strategies, i.e. self–financing trading
strategies which replicate the payoff under consideration at maturity. This implies
that the fair price is given by the amount necessary to initialize the self–financing
replicating strategy. If such a perfect hedge is used, the guarantees of the insurance
contract can be honored with probability one. Note that these strategies are dynamic
and rely on the embedded option prices at each t ∈ [0, tN ]. In order to gain insight
into the hedging possibilities, it is not enough to specify the t0–price of the insurance

1Notice that the option features which are embedded into the insurance contract differ from standard
option features. In financial terms, the embedded derivatives are given by forward starting options
where the payoff is delayed to the maturity of the insurance contract.
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contract needed to design a fair contract, but to consider the price process (It)0≤t≤tN

where

I(t) = D(t, tN)
(

ÃtN−1
eg(tN−tN−1)

)

+ α

N−1
∑

i=0

ÃtiC
(i)
t .

To start the analysis of the fair contract specification we have to determine the

price process (C
(i)
t )0≤t≤tN with respect to a complete financial market. We have to

distinguish between a stochastic and a deterministic accumulation factor.

3. Complete financial market model

In the following, we assume a complete and arbitrage–free financial market model
under interest rate risk where the dynamic of the index price process S as well as
the dynamics of the zero coupon bonds D(., t̄) paying one monetary unit at maturity
t̄ ∈ [0, T ] are lognormal.

Definition 3.1 (Lognormal Process). We call a stochastic process (Zt)0≤t≤T lognor-
mal iff it is a solution of

dZt = Zt (µtdt + σZ(t)dWt)

with deterministic dispersion coefficient σZ : [0, T [→ IRd
+.

Thus, the index dynamic is modeled along the lines of Black and Scholes (1973b),
the interest rate dynamic is given by a Gauss–Markov Heath, Jarrow and Morton
(1992) model. In particular, we assume the existence of a uniquely defined martigale
measure P ∗ such that

dSt = St (rtdt + σS(t)dW ∗
t )(5)

dD(t, t̄) = D(t, t̄) (rtdt + σt̄(t)dW ∗
t )(6)

where W ∗ denotes a d–dimensional Brownian Motion with respect to P ∗, and σS and
σt̄ satisfy the usual regularity conditions. The volatility of the forward price process
of the bond with maturity T2 with respect to the T1–bond is given by σT2(t)−σT1(t).

2

Analoguous, the forward volatility of the index S with respect to the t̄–bond is given
by σS(t) − σt̄(t). In the following, we will simply refer to the volatility of the quo-
tient process X

Y
as the forward volatility and use the shorter notation σX,Y for σX−σY .

Recall that C
(i)
t (i = 0, . . . , N − 1) denotes the arbitrage–free price at t ∈ [0, tN ]

of the embedded option due to the excess return from ti to ti+1 where the payment
is lagged to tN , i.e. an European contingent claim where the payoff at the contract
maturity T = tN is given by equation (4). In the following, we consider a fixed
reference period [ti, ti+1] (i ∈ {0, . . . , N − 1}) and simplify our notation by using C

instead of C(i) as a symbol for the relevant embedded option. We distinguish between
a stochastic accumulation factor, i.e. scenario (a) and a deterministic accumulation
factor, i.e. scenario (b), and denote the option prices with C(a) and C(b), respectively.
For t ∈]ti+1, tN ] we can immediately write down the price process in both cases since

2Notice that the quotient process of two lognormal processes is lognormal as well. In particular,
the local volatility of the quotient process is simply given by the difference of the local volatilities.
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the excess return is already known, i.e. we have

C
(a)
t = exp

{
∫ t

ti+1

ru du

}[

Sti+1

Sti

− eg(ti+1−ti)

]+

for all t ∈]ti+1, tN ],

C
(b)
t = D(t, tN)β̄ti+1,tN

[

Sti+1

Sti

− eg(ti+1−ti)

]+

for all t ∈]ti+1, tN ].

where βti+1,tN is deterministic in scenario (b). For t ∈ [t0, ti+1], it is intuitively clear
that the option which is included in the insurance contract can be interpreted as
an exchange option. More precisely, we can use the interpretation of the following
proposition.

Proposition 3.2. For t ∈ [t0, ti+1] and w ∈ {a, b}, the t–price of the embedded option
C is given by the t–price of an option to exchange two (pseudo–) assets X(w) = X

and Y (w) = Y where the payoff at ti+1 is given by [X
(w)
ti+1

− Y
(w)
ti+1

]+. In particular, the
processes X = (Xt)0≤t≤ti+1

and Y = (Yt)0≤t≤ti+1
are in the case of stochastic bank

account given by

X
(a)
t = D(t, ti)1{t∈[t0,ti[} +

St

Sti

1{t∈[ti,ti+1]}

Y
(a)
t = D(t, ti+1)e

g(ti+1−ti)1{t∈[t0,ti+1]}

and in the case of a deterministic accumulation factor β̄ they are determined by

X
(b)
t = β̄ti+1,tN

D(t, tN)

D(t, ti+1)
c(t, ti, ti+1) X

(a)
t

Y
(b)
t = β̄ti+1,tN

D(t, tN)

D(t, ti+1)
Y

(a)
t

where the proportionality factor c(t, ti, ti+1) is defined by

c(t, ti, ti+1) := exp

{

−

∫ max(t,ti)

t

σti+1,tN (u)σti,ti+1
(u) du −

∫ ti+1

max(t,ti)

σti+1,tN (u)σS,ti+1
(u) du

}

Proof. ad (a) Pricing under No–Arbitrage implies that at time t ∈ [t0, ti+1]

C
(a)
t = EP ∗

[

e−
∫ tN

t ru duβ̄ti+1,tN

(

Sti+1

Sti

− eg(ti+1−ti)

)+
∣

∣

∣

∣

∣

Ft

]

= EP ∗

[

e−
∫ ti+1

t ru du

(

Sti+1

Sti

− eg(ti+1−ti)

)+
∣

∣

∣

∣

∣

Ft

]

.

This is equal to the t–price of an exchange option with maturity ti+1 and payoff

(X
(a)
ti+1

− Y
(a)
ti+1

)+ where

X
(a)
ti+1

=
Sti+1

Sti

, Y
(a)
ti+1

= eg(ti+1−ti).
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Furthermore, it holds that for 0 ≤ t ≤ ti+1

X
(a)
t = EP ∗

[

e−
∫ ti+1

t ru du X
(a)
ti+1

∣

∣

∣
Ft

]

= EP ∗

[

e−
∫ ti

t ru duEP ∗

[

e−
∫ ti+1

ti
ru du Sti+1

Sti

∣

∣

∣

∣

Fti

]∣

∣

∣

∣

Ft

]

1{t∈[t0,ti[} +
St

Sti

1{t∈[ti,ti+1]}

Y
(a)
t = EP ∗

[

e−
∫ ti+1

t ru du Y
(a)
ti+1

∣

∣

∣
Ft

]

= D(t, ti+1)e
g(ti+1−ti).

The calculation of X(b) and Y (b) is analogous. However, the computation of X(b) is
based on Girsanov’s theorem. In particular, there is more than one change of mea-
sure involved, c.f. appendix A. ¤

Observe that the price processes of the assets X and Y are lognormal.3 This im-
plies that there exists a continuous–time hedging strategy which is, if specified in
X and Y , uniquely defined. Obviously, X and Y are not necessarily traded assets.
The topic of hedging is analyzed in detail in section 6. For the time being, we are
purely interested in the fair options prices.4 Notice, that the pricing formula for ex-
change options is well known in a Black/Scholes–type setup and was first derived by
Margrabe (1978). This result was extended to a more general setup which includes
stochastic interest rates by Frey and Sommer (1996). Applying these results gives
the following proposition.

Proposition 3.3. For t ∈ [t0, ti+1] and w ∈ {a, b}, the t–price of the embedded
option C is given by

C
(w)
t = X

(w)
t N

(

h1(t, ti, ti+1, Z
(w)
t )

)

− Y
(w)
t N

(

h2(t, ti, ti+1, Z
(w)
t )

)

where Z
(w)
t :=

X
(w)
t

Y
(w)
t

. N denotes the cumulative distribution function of the standard

normal distribution and the functions h1 and h2 are given by

h1(s, t, u, z) =
ln(z) + 1

2
v2(s, t, u)

v(s, t, u)
h2(s, t, u, z) = h1(s, t, u, z) − v(s, t, u),

where v2(s, t, u) =

∫ max(s,t)

s

‖σt,u(x)‖2 dx +

∫ u

max(s,t)

‖σS,u(x)‖2 dx.

Proof. In Frey and Sommer (1996) it is shown that, in a model where the quotient
process Z := X

Y
is lognormal, the price of an option to exchange X for Y at maturity

date T with payoff [XT − YT ]+ is given by

C(t, Zt) = Xt N (h1(t, Zt)) − Yt N (h2(t, Zt))

3For a succinct treatment of the significance of this assumption see Rady (1997).
4Again, it is to emphasize that prices are only fair with respect to a model assumptions. For
example, lifting the assumption that the volatilities and correlation coefficients are known, a price
is only as meaningful as the hedging strategy behind it is robust with respect to the misspecification
problematic.
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where Z := X
Y

h1(t, z) =
ln(z) + 1

2

∫ T

t
‖σZ(s)‖2ds

√

∫ T

t
‖σZ(s)‖2ds

, h2(t, z) = h1(t, z) −

√

∫ T

t

‖σZ(s)‖2ds.

Therefore, one only needs to compute the (total) volatilities of Z(a) and Z(b) from
time t to time T = tN . Notice that the quotient process of two lognormal processes
is lognormal as well, in particular σZ = σX − σY =: σX,Y . Furthermore, Proposition
3.2

Z
(a)
t =

X
(a)
t

Y
(a)
t

=
D(t, ti)

D(t, ti+1)eg(ti+1−ti)
1{t∈[t0,ti[} +

St

Sti

D(t, ti+1)eg(ti+1−ti)
1{t∈[ti,ti+1]}

Z
(b)
t =

X
(b)
t

Y
(b)
t

= c(t, ti, ti+1)
X

(a)
t

Y
(a)
t

= c(t, ti, ti+1)Z
(a)
t .

The total volatility vt,tN from time t to tN of the embedded option does not depend
on the choice of β̄ti+1,tN . In particular, we have

vZ(a)

t,tN
= vZ(b)

t,tN
= vt,ti+1

:= v(t, ti, ti+1)

where

v2(t, ti, ti+1) =

∫ max(t,ti)

t

‖σti,ti+1
(s)‖2 ds +

∫ ti+1

max(t,ti)

‖σS,ti+1
(s)‖2 ds. ¤

The above proposition gives the price of the embedded option in terms of the assets
X and Y . It is worth mentioning that the embedded option price C(a) is independent
of the correlation of asset prices and interests rates between ti+1 and tN . This is easily
explained looking at the proof of Proposition 3.2. With respect to the expectation
of the discounted payoff, the discount factor of ti+1 until tN and the stochastic bank
account cancel out such that the delayed payment option can also be interpreted as
an option with maturity ti+1, i.e. an option without a time delay of payments. The

asset prices underlying the t–price of the exchange option in scenario (b), i.e. X
(b)
t

and Y
(b)
t , are on the one hand both proportional to the asset prices X

(a)
t and Y

(a)
t .

The proportionality factor is given by

β̄ti+1,tN

D(t, tN)

D(t, ti+1)
.

On the other hand, the price of the (pseudo–) asset X(b) is additionally corrected
with a parameter c which is determined by forward volatilities. c depends on the
correlation of the asset S with a bond maturing at tN and ti+1.

5 The following corol-
lary anticipates the convexity correction of the option price which is an implication
of scenario (b). A detailed discussion and illustration of the effects and implications
are given in sec. 5. Applying the pricing results of Proposition 3.3, the convexity
correction between the deterministic and stochastic accumulation factor is given by

5This is implied by the product of the forward volatility σti+1,tN
and the asset volatility σS .



RETURN GUARANTEES WITH DELAYED PAYMENT 11

Corollary 3.4. Let C(a) denote the embedded option price with stochastic accumu-
lation factor and C(b) denote the embedded option price with a deterministic accumu-
lation factor β̄ti+1,tN , then it holds

C(b)(t,X
(b)
t , Y

(b)
t ) = β̄ti+1,tN

D(t,tN )
D(t,ti+1)

C(a)(t, c(t, ti, ti+1)X
(a)
t , Y

(a)
t )

where c is given as in Proposition 3.2.

4. Fair contract specification

Recall that a contract is called fair if the present value of the periodic premia A

coincides with the contract value at the date of contract inception t0, i.e.

(7) A

N−1
∑

i=0

D(t0, ti) = D(t0, tN) ÃtN−1
eg(tN−tN−1) + α

N−1
∑

i=0

ÃtiC
(i)
t0

.

Since Ã is proportional to A, the fair contract parameters (α, g) are independent of
the size of the periodic premia A. Furthermore, note that the difference between the
two present value terms, i.e.

A

N−1
∑

i=0

D(t0, ti) − D(t0, tN) ÃtN−1
eg(tN−tN−1)

can be interpreted as an implicit premium for the option features granted in the
contract. According to equation (7), a fair participation rate α∗ is given by

α∗ =
A

∑N−1
i=0 D(t0, ti) − D(t0, tN)ÃtN−1

eg(tN−tN−1)

∑N−1
i=0 ÃtiC

(i)
t0

.

The denominator is positive because of the option features such that α∗ is positive
if the numerator is positive, too, i.e. if

A

N−1
∑

i=0

D(t0, ti) − D(t0, tN)ÃtN−1
eg(tN−tN−1) > 0.

Intuitively it is clear that the implicit option premium is positive if the guaranteed
amount in terms of a rate g is lower than the amount which can be achieved if the
present value of the periodic premia is invested on the market today. Therefore, the
following argumentation is based on the forward yields which are observed today.
Let y(ti, tj, tk) (i ≤ j ≤ k) denote the forward yield at ti which holds for the interval
[tj, tk], i.e.

y(t0, ti, tN) :=
−1

tN − ti
ln

D(t0, tN)

D(t0, ti)
.

In particular, y(t0, t0, ti) denotes the spot yield. The present value of the difference
of the paid premia and the guaranteed amount G can be rewritten in terms of the
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Fair parameter combinations (α∗, g∗)
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Figure 2. Fair pa-
rameter combinations
for a contract of type
(a) and maturity in 30
years for three varying
asset volatilities.
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Figure 3. Fair param-
eter combinations for a
contract of type (b) with
β̄ = 1 and maturity in 30
years for three varying as-
set volatilities.

The interest rate dynamic is assumed to be as in a Vasicek model with r0 = 0.05,
volatility 0.02, speed of mean reversion 0.18 and long run mean 0.07. The asset
dynamic is given by a Black/Scholes model with volatility of 0.1, 0.2 and 0.3,
respectively. The correlation of assets and bonds is 0.01.

forward yields by

A

N−1
∑

i=0

D(t0, ti) − D(t0, tN)ÃtN−1
eg(tN−tN−1)

= D(t0, tN)

(

A

N−1
∑

i=0

D(t0, ti)

D(t0, tN)
− A

N−1
∑

i=0

eg(tN−ti)

)

= A D(t0, tN)
N−1
∑

i=0

(

ey(t0,ti,tN )(tN−ti) − eg(tN−ti)
)

.

According to the intuition above, a guaranteed rate g which is lower than the forward
yield is a sufficient condition for a positive fair participation rate α∗, i.e.

g ≤ mini=1,...,N−1 y(t0, ti, tN) ⇒ α∗ ≥ 0.

In particular, for a flat yield curve, the condition simplifies to

α∗ ≥ 0 ⇐⇒ g ≤ y.

A second question which is of minor importance is if the fair parameter α∗ is bounded
from above by one. Notice that in the case of a deterministic factor β̄, the answer
simply is no, i.e. α∗ is not bounded from above by one. This is of course due to the
loss which is incurred by a long time delay in combination with a low factor β̄. In
particular, α∗ may be greater than one if no interest is granted for the time delay of
the payments. This is illustrated in Figure 3.
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Under scenario (a), i.e. β̄ coincides with the stochastic bank account, the prop-
erty α∗ ≤ 1 is equivalent to the condition that the sum of weighted option prices is
greater than the compensation to be granted if the guaranteed rate g is lower than
the forward rates.

α∗ ≤ 1 ⇐⇒
N−1
∑

i=0

ÃtiC
(i)
t0

≥ A D(t0, tN)
N−1
∑

i=0

(

ey(t0,ti,tN )(tN−ti) − eg(tN−ti)
)

.

Notice that the fair contract parameter α∗ is decreasing in g. Therefore, it is enough
to consider the limit g → −∞. We have

lim
g→−∞

A D(t0, tN)
N−1
∑

i=0

(

ey(t0,ti,tN )(tN−ti) − eg(tN−ti)
)

= A D(t0, tN)
N−1
∑

i=0

ey(t0,ti,tN )(tN−ti)

= A

N−1
∑

i=0

D(t0, ti)

and

lim
g→−∞

N−1
∑

i=0

ÃtiC
(i)
t0

= lim
g→−∞

N−1
∑

i=0

A

(

i
∑

j=0

eg(ti−tj)

)

C
(i)
t0

= lim
g→−∞

N−1
∑

i=0

A

(

i−1
∑

j=0

eg(ti−tj) + 1

)

C
(i)
t0

= A

N−1
∑

i=0

D(t0, ti)

such that the limits coincide. Thus, in the case of scenario (a), limg→−∞ α∗(g) = 1
and α∗ is bounded from above by one. This is illustrated in Figure 2.

5. Certainty equivalent

It turned out that in the case of scenario (a) the delayed payment option can
be reinterpreted as a simple option, i.e. an option without a time lag between the
observation of the excess return and the final payment. However, this is not possible
if the accumulation factor is deterministic. To measure the difference between these
two cases consider a deterministic accumulation factor such that the price of deferring
the payment is zero. More precisely, we call β̄∗ the certainty equivalent if the value of
the delayed payment option with the deterministic accumulation factor β̄∗ coincides
with the value of the option without time delay. This means that a deterministic β̄

which is higher (lower) than β̄∗ implies a positive (negative) premium for the time
lag of payoffs. For β̄ = β̄∗ the time lag of the payoffs is fully compensated. Applying
Corollary 3.4 the certainty equivalent β̄∗ is given by

β̄∗
ti+1,tN

:=
D(t0, ti+1) C(a)(t0, X

(a)
t0

, Y
(a)
t0

)

D(t0, tN) C(a)(t0, c(t0, ti, ti+1)X
(a)
t0

, Y
(a)
t0

)

where the parameter c is given as in Proposition 3.2.
Notice that the certainty equivalent is connected to the tN–forward price of a

zero coupon bond with maturity ti+1. Intuitively it is clear that in a world without
stochastic interest rates the certainty equivalent coincides with the forward price, i.e.
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Certainty equivalent

ρ 1

tN−ti+1
ln β̄∗(ti+1, tN ) β̄∗(ti+1, tN )

-1.00 0.0720282 1.91220
-0.90 0.0708124 1.89139
-0.80 0.0695942 1.87077
-0.70 0.0683737 1.85033
-0.60 0.0671509 1.83008
-0.50 0.0659256 1.81001
-0.40 0.0646979 1.79012
-0.30 0.0634678 1.77041
-0.20 0.0622352 1.75088
-0.10 0.0610001 1.73152
0.00 0.0597625 1.71234
0.10 0.0585224 1.69334
0.20 0.0572796 1.67450
0.30 0.0560343 1.65584
0.40 0.0547863 1.63735
0.50 0.0535357 1.61902
0.60 0.0522824 1.60086
0.70 0.0510264 1.58287
0.80 0.0497677 1.56504
0.90 0.0485062 1.54737
1.00 0.0472419 1.52986

Table 1. Certainty equivalent with respect to an embedded option
where t = ti = 0, tN = 10 and g = 0.03. In particular, notice that

the certainty equivalent is slightly above the forward price D(t,ti+1)
D(t,tN )

=

1.70653 for ρ = 0.

c = 1.6 Besides, recalling that the option price C is increasing in the price of the
underlying X it is easy to summarize the connection of the certainty equivalent and
the convexity correction parameter c and its implications as follows.

Lemma 5.1. Let F (t0, ti+1, tN) denote the tN–forward price of a zero coupon bond
with maturity ti+1, i.e.

F (t0, ti+1, tN) :=
D(t0, ti+1)

D(t0, tN)
.

The certainty equivalent β̄∗
ti+1,tN

is above (below) F (t0, ti+1, tN) if and only if c =
c(t0, ti, ti+1) is below (above) one, equality holds for c = 1.

The convexity correction parameter as well as the certainty equivalent are cru-
cially depending on the correlation of assets and bonds. Heuristically, this is easily
explained along the lines of the motivation which is already given in the introduction
and in Section 3. With respect to scenario (a), the option price given by

EP ∗

[

e−
∫ ti+1

t0
ru du

(

Sti+1

Sti

− eg(ti+1−ti)

)+
]

6It is easily seen that c = 1 in the limit for interest (or bond) volatilities converging to zero.
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is equal to an option with maturity ti+1 and no time delay. On the other hand, with
respect to scenario (b), the price of the delayed payment option, i.e.

β̄ti+1,tN EP ∗

[

e−
∫ ti+1

t0
ru due

−
∫ tN

ti+1
ru du

(

Sti+1

Sti

− eg(ti+1−ti)

)+
]

is increasing in the correlation of the asset and the bond with maturity ti+1 and that
of the asset and the tN–bond. Therefore, it is clear that the certainty equivalent is
decreasing in the asset bond correlation. In order to formalize the above observations,
let ρS,t̄ denote the local correlation coefficient of the asset S and a bond with maturity
t̄, i.e.

ρS,t̄(t) :=
d〈S,D(., t̄)〉t

√

d〈S〉t d〈D(., t̄)〉t
.

If the dynamic of S is given by equation (5) and the dynamic of D by equation (6)
we have

ρS,t̄(t) =
σs(t)σt̄(t)

√

‖σS(t)‖2‖σt̄(t)‖2
respectively σs(t)σt̄(t) = ρS,t̄(t)‖σS(t)‖‖σt̄(t)‖.

Together with the definition of the convexity correction, c.f. Proposition 3.2, c can
be written in terms of the asset bond correlation, i.e.

c(t0, ti, ti+1) = exp

{
∫ ti

t0

σtN ,ti+1
(u)σti(u) du −

∫ ti+1

t0

σtN ,ti+1
(u)σti+1

(u) du

}

exp

{
∫ ti+1

ti

‖σS(u)‖
(

ρS,tN (u)‖σtN (u)‖ − ρS,ti+1
(u)‖σti+1

(u)‖ du
)

}

.

Thus, depending on the variance–covariance matrix of assets and bonds, the certainty
equivalent can be above, below or less than the forward price F . In particular, it
is above the forward price if assets and bonds are uncorrelated. This is illustrated
by the Vasicek model where the parameters are given as in Figure 2 and Figure 3,
respectively.

6. Hedging

In the following section we analyze the hedging decisions needed for the payoff of
the insurance contract to be synthesized on the financial market. We will show that
the hedging of the contract type (a) is much easier in its construction and has also
the advantage that it can be specified without using the asset bond correlation as a
separate input. It turns out that this is not only appealing with respect to the prob-
lem of parameter estimation, but also with regard to the so–called hedging robustness.

Again, we simplify notation and use C instead of C(i) to denote the delayed pay-
ment option with reference period [ti, ti+1] and payoff at tN . As hedging is trivial
once the excess return is known, we focus on the hedging decisions for t ∈ [t0, ti+1].
Along the lines of Proposition 3.3 we have

Proposition 6.1. For t ∈ [t0, ti+1] and w ∈ {a, b}, the self–financing and duplicating

stratgey φ =
(

φX(w)
, φY (w)

)

in the assets X(w), Y (w) for the embedded option C is



RETURN GUARANTEES WITH DELAYED PAYMENT 16

given by

φX(w)

t = N
(

h1(t, ti, ti+1, Z
(w)
t )

)

, φY (w)

t = −N
(

h2(t, ti, ti+1, Z
(w)
t )

)

where Z
(w)
t :=

X
(w)
t

Y
(w)
t

. N denotes the cumulative distribution function of the standard

normal distribution and the functions h(1) and h(2) are given by

h1(s, t, u, z) :=
ln(z) + 1

2
v2(s, t, u)

v(s, t, u)
; h2(s, t, u, z) := h1(s, t, u, z) − v(s, t, u),

where v2(s, t, u) :=

∫ max(s,t)

s

‖σt,u(x)‖2 dx +

∫ u

max(s,t)

‖σS,u(x)‖2 dx.

Proof. In a model where the quotient process Z := X
Y

is lognormal, it is well
known, c.f. for example Margrabe (1978) or Frey and Sommer (1996), that the
hedging strategy of an option to exchange X for Y at maturity date T with payoff
[XT − YT ]+ is given by

φX
t = N (h(1)(t, Zt)) units of X, φY

t = −N (h(2)(t, Zt)) units of Y,

where Z := X
Y

. The rest of the proof is a direct consequence of Proposition 3.3.

2

Observing that the assets X(w), Y (w) are not traded on the financial market in their
original version, a natural way to proceed is to synthesize X(w), Y (w) with basic assets.
This is easy in scenario (a). Recall that

X
(a)
t = D(t, ti)1{t∈[t0,ti[} +

St

Sti

1{t∈[ti,ti+1]},

Y
(a)
t = D(t, ti+1)e

g(ti+1−ti)1{t∈[t0,ti+1]}.

Thus, it is immediately clear that X(a) is created by the following strategy. For
t ∈ [t0, ti[ buy a bond with maturity ti and sell the bond at t = ti. At ti, the
portfolio value is D(ti, ti) = 1 which is exactly the amount needed to buy 1

Sti

assets

S. In particular, the above strategy which consists of two buy and hold decisions is
self–financing and duplicates the asset X(a). Besides, buying eg(ti+1−ti) bonds with
maturity ti+1 synthesizes Y (a). Thus, the following proposition is straightforward.

Proposition 6.2. The strategy φ̃ =
(

φ̃(i), φ̃(i+1), φ̃S
)

consisting of the assets D(., ti), D(., ti+1)

and S where

φ̃
(i)
t = N

(

h1(t, ti, ti+1, Z
(a)
t )

)

1{t∈[t0,ti[}

φ̃
(i+1)
t = −eg(ti+1−ti)N

(

h2(t, ti, ti+1, Z
(a)
t )

)

φ̃S
t = N

(

h1(t, ti, ti+1, Z
(a)
t )

)

1{t∈[ti,ti+1]}

gives a perfect hedge for the delayed payment option C regarding scenario (a).

There are two things worth mentioning. In the first instance, the only unobserv-
able parameter of the hedging strategy is the cumulated volatility v. In particular,
this implies that the estimation problem does not include a separate estimation of
the covariances. Secondly, notice that the strategy, apart from indicating a switch
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from the hedging instrument D(., ti) to S, is a simple Black/Scholes–type strategy.
This allows the application of the well known robustness result of Black/Scholes, c.f.
El Karoui, Jeanblanc-Picqué and Shreve (1998), which states that the associated cost
process is of finite variation irrespective of the true dynamics of the underlying as-
sets.7 If an upper bound for all local volatilities of the quotient process Z(a) is known,
the hedging strategy which is obtained for the maximum volatility superreplicates
the option, i.e. it dominates the payoff to be hedged almost surely. In particular, a
conservative estimation of v gives an upper price bound.

Unfortunately, this is not true with respect to a delayed payment option with re-
spect to scenario (b). Recall that the price process of the asset X(b) is given by

X
(b)
t = β̄ti+1,tN

D(t, tN)

D(t, ti+1)
c(t, ti, ti+1)

(

D(t, ti)1{t∈[t0,ti[} +
St

Sti

1{t∈[ti,ti+1]}

)

.

In the Appendix B it is shown that one (but not the only) possibility to syn-
thesize X(b) is given by a strategy φ =

(

φ(i), φ(i+1), φ(N), φS
)

in the basic assets
D(., ti), D(., ti+1), D(., tN) and S where

φ
(N)
t =

X
(b)
t

D(t, tN)
, φ

(i+1)
t =

−X
(b)
t

D(t, ti+1)
,

φ
(i)
t =

X
(b)
t

D(t, ti)
1{t∈{t0,ti}}, φS

t =
X

(b)
t

St

1{t∈{ti,ti+1}}.

Notice that the above strategy depends on the convexity correction parameter c. In
particular, this is true for all strategies which can be used to synthesize X(b) with-
out using X(b) itself. The above strategy is chosen as the most suitable one in the
following sense. Once the asset X(b), i.e. the correction parameter c, is known, the
strategy no longer depends on the model assumption. However, c depends on the
asset bond correlation which must be estimated to construct the hedge. Besides, it is
not possible to hedge the insurance contract with a robust Black/Scholes type strat-
egy regarding scenario (b). Basically, this is explained as follows. The process X(b)

is not the true underlying in a world where the volatilities are stochastic themselves.
Therefore, the hedging error is not only due to a potentially misspecified volatility,
but also to the wrong hedging instrument. The last source gives rise to costs which
are not of finite variation, which is a necessary condition to achieve a superhedge, c.f.
Dudenhausen, Schlögl and Schlögl (1998). In particular, the knowledge of an upper
volatility bound is not enough to construct a robust hedge or give a meaningful upper
price bound.

7. Conclusion

The results of the paper show that the fairness and the hedging possibilities of
an insurance contract where excess returns are observed periodically but delayed to
maturity, depend on the question of how the time–lag is honored in terms of an ac-
cumulation factor.

It turns out that the choice of a stochastic accumulation factor facilitates the pricing
and risk management with respect to the following aspects. Firstly, the parameter

7The true process is assumed to be a diffusion process.
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estimation problem is reduced. It is not necessary to estimate the correlations of
the asset and the bonds separately. Secondly, the hedging strategy implied by a
Black/Scholes type model setup is robust, i.e. if the strategy is computed according
to an upper bound on the (forward–) volatilities, it dominates the payoff to be hedged.
Once a conservative estimation, i.e. a confidence level, of the volatilities is achieved,
it is ensured that the insurance company stays on the safe side. This also means
that the guarantees which are granted to the insurance takers can be honored with
probability one if the volatility does not violate the upper bound. However, this is
not true for a deterministic accumulation factor, as is common for many unit–linked
contracts e.g. in Germany. At first glance, the use of a deterministic accumulation
factor might be motivated to reduce the contract complexity for the underwriter.
Our results show that this is not true. At least three arguments should be mentioned.

Firstly, pricing is affected by the convexity correction which is not only proportional
to the forward price, but also sensitive to changes in the bond asset correlation.
Thus, both a shift of the yield curve and a change in the correlation structure have
an impact on the fair contract specification. Bearing in mind that in contrast to
pure financial products the pricing of unit–linked (life) insurance products is not at
all adjusted continuously, the dimension of this problem becomes obvious.

Secondly, since pricing is much more static for insurance products than for pure
financial products, hedging needs closer attention. One problem of hedging is the
long time to maturity of the contracts. This is true for both scenarios. But even
if a static or quasi–static hedge is available in the case of a stochastic accumulation
factor, this hedge is not possible for the opposite case. For example, hedging long
time to maturity with short time to maturity options can be the basis of a super-
hedging strategy in the first, but not in the second case. That is, a deterministic
accumulation factor implies a higher necessity of dynamic hedging.

Thirdly, consider risk management. To some extent, pricing can be seen as a mathe-
matical problem and continuous–time hedging as a theoretical concept. However, the
risk management affects the default of the underwriter as well as the benefits to the
insured. Therefore, the risk management concerns the insurer and the stock holder as
well as the regulator. One way to overcome pricing and hedging problems is to set up
a financial strategy which dominates financial obligations. Robustness against model
misspecifications of such superhedging strategies can be seen as a necessary require-
ment. In the case of a deterministic accumulation factor, it is not possible to hedge
the financial claim with a robust Black/Scholes–type strategy. In this case, fixing an
upper bound for the volatility does not necessarily specify the worst–case scenario.
Therefore, a Black/Scholes–type model is not sufficient to construct a robust hedge
or to calculate meaningful upper price bounds. In order to formulate and implement
a risk management system covering the needs of the insurer and the regulation, it is
far from sufficient just to calculate some kind of value at risk or related measure. To
sum up our discussion, the choice of the accumulation factor in unit–linked insurance
contracts plays a critical role and its construction should be reconsidered.
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Appendix A. Proof of Proposition 3.2

Lemma A.1. Let W ti+1 denote a d–dimensional Brownian Motion with respect to the
ti+1–forward measure.

(a) For t ∈ [t0, ti] it holds

Sti+1

Sti

=
D(t, ti)

D(t, ti+1)
exp

{

−
1

2

∫ ti

t

‖σti,ti+1
(u)‖2 du +

∫ ti

t

σti,ti+1
(u) dW ti+1(u)

}

· exp

{

−
1

2

∫ ti+1

ti

‖σS,ti+1
(u)‖2 du +

∫ ti+1

ti

σS,ti+1
(u) dW ti+1(u)

}

(b) For t ∈ [ti, ti+1] it holds

Sti+1

St

=
1

D(t, ti+1)
exp

{

−
1

2

∫ ti+1

t

‖σS,ti+1
(u)‖2 du +

∫ ti+1

t

σS,ti+1
(u) dW ti+1(u)

}

Proof. ad (a) With respect to the ti+1–forward measure it holds for t ≤ ti

Sti+1

D(ti+1, ti+1)
=

St

D(t, ti+1)
exp

{

−
1

2

∫ ti+1

t

‖σS,ti+1
(u)‖2 du +

∫ ti+1

t

σS,ti+1
(u) dW ti+1(u)

}

,

with respect to the ti–forward measure

Sti

D(ti, ti)
=

St

D(t, ti)
exp

{

−
1

2

∫ ti

t

‖σS,ti(u)‖2 du +

∫ ti

t

σS,ti(u) dW ti(u)

}

.

Therefore,

Sti+1

Sti

=
D(t, ti)

D(t, ti+1)

exp
{

−1
2

∫ ti+1

t
‖σS,ti+1

(u)‖2 du +
∫ ti+1

t
‖σS,ti+1

‖2 dW ti+1(u)
}

exp
{

−1
2

∫ ti

t
‖σS,ti(u)‖2 du +

∫ ti

t
σS,ti dW ti(u)

}

Using

W ti(t) = W ti+1(t) −

∫ t

0

σti,ti+1
(u) du

Sti+1

Sti

=
D(t, ti)

D(t, ti+1)

e−
1
2

∫ ti+1
t ‖σS,ti+1

(u)‖2 du+
∫ ti+1

t σS,ti+1
(u) dW ti+1 (u)

e−
1
2

∫ ti
t ‖σS,ti

(u)‖2 du+
∫ ti

t σS,ti
(u) dW ti+1 (u)−

∫ ti
t σS,ti

(u)σti,ti+1 (u) du

=
D(t, ti)

D(t, ti+1)
exp

{

−
1

2

∫ ti

t

‖σS,ti+1
(u)‖2 − ‖σS,ti(u)‖2 − 2σS,ti(u)σti,ti+1

(u) du

}

exp

{
∫ ti

t

(

σS,ti+1
(u) − σS,ti(u)

)

dW ti+1(u)

}

exp

{

−
1

2

∫ ti+1

ti

‖σS,ti+1
(u)‖2 du +

∫ ti+1

ti

σS,ti+1
(u) dW ti+1(u)

}

Using σS,ti+1
− σS,ti = σti,ti+1

and σS,ti+1
= σS,ti + σti,ti+1

gives the result.
ad (b). (b) is a direct consequence of

Sti+1

D(ti+1, ti+1)
=

St

D(t, ti+1)
exp

{

−
1

2

∫ ti+1

t

‖σS,ti+1
(u)‖2 du +

∫ ti+1

t

‖σS,ti+1
(u)‖2 dW ti+1(u)

}

¤ .
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Lemma A.2. For (Xt)0≤t≤ti+1
with

Xt := EP ∗

[

e−
∫ ti+1

t ru du D(ti+1, tN)
Sti+1

Sti

∣

∣

∣

∣

Ft

]

it holds

Xt = c(t, ti, ti+1)

[

D(t, tN)
D(t, ti)

D(t, ti+1)
1{t∈[t0,ti[} +

D(t, tN)

D(t, ti+1)

St

Sti

1{t∈[ti,ti+1]}

]

where

c(t, ti, ti+1) = exp

{

−

∫ max(t,ti)

t

σti+1,tN (u)σti,ti+1
(u) du −

∫ ti+1

max(t,ti)

σti+1,tN (u)σS,ti+1
(u) du

}

Proof. With a change of measure, i.e.
(

dP ∗

dP ti+1

)

t

=
e

∫ t

t0
r(u) du

D(t0, ti+1)

D(t, ti+1)

it follows

Xt = D(t, ti+1)EP ti+1

[

D(ti+1, tN)

D(ti+1, ti+1)

Sti+1

Sti

∣

∣

∣

∣

Ft

]

Using

D(ti+1, tN)

D(ti+1, ti+1)
=

D(t, tN)

D(t, ti+1)
exp

{

−
1

2

∫ ti+1

t

‖σtN ,ti+1(u)‖
2 du +

∫ ti+1

t

σtN ,ti+1(u) dW ti+1(u)

}

Xt = D(t, tN)EP ti+1

[

exp

{

−
1

2

∫ ti+1

t

‖σtN ,ti+1(u)‖
2 du +

∫ ti+1

t

σtN ,ti+1(u) dW ti+1(u)

}

Sti+1

Sti

∣

∣

∣

∣

Ft

]

According to Lemma A.1 it holds for t ≤ ti

Sti+1

Sti

=
D(t, ti)

D(t, ti+1)
exp

{

−
1

2

∫ ti

t

‖σti,ti+1
(u)‖2 du +

∫ ti+1

ti

σti,ti+1
(u) dW ti+1(u)

}

· exp

{

−
1

2

∫ ti+1

ti

‖σS,ti+1
(u)‖2 du +

∫ ti

t

σS,ti+1
(u) dW ti+1(u)

}

Therefore, for t ≤ ti

Xt = D(t, tN)
D(t, ti)

D(t, ti+1)

exp

{

−
1

2

∫ ti

t

(

‖σtN ,ti+1(u)‖
2 + ‖σti,ti+1(u)‖

2
)

du

−
1

2

∫ ti+1

ti

(

‖σtN ,ti+1(u)‖
2 + ‖σS,ti+1(u)‖

2
)

du

}

EP ti+1

[

exp

{
∫ ti

t

(

σtN ,ti+1(u) + σti,ti+1(u)

)

dW ti+1(u)

+

∫ ti+1

ti

(

σtN ,ti+1(u) + σS,ti+1(u)

)

dW ti+1(u)

}∣

∣

∣

∣

Ft

]

= D(t, tN)
D(t, ti)

D(t, ti+1)
exp

{
∫ ti

t

σtN ,ti+1(u)σti,ti+1(u) du +

∫ ti+1

ti

σtN ,ti+1(u)σS,ti+1(u) du

}
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For t ∈ [ti, ti+1] it holds (c.f. Lemma A.1 (b)

Xt =
D(t, tN)

D(t, ti+1)

St

Sti

exp

{

−
1

2

∫ ti+1

t

(

‖σtN ,ti+1
(u)‖2 + ‖σS,ti+1

(u)‖2
)

du

}

EP ti+1

[

exp

{
∫ ti+1

t

(

σtN ,ti+1
(u) + σS,ti+1

(u)
)

dWti+1
(u)

}∣

∣

∣

∣

Ft

]

=
D(t, tN)

D(t, ti+1)

St

Sti

exp

{
∫ ti+1

t

σtN ,ti+1(u)σS,ti+1
(u) du

}

¤ .

Appendix B. Synthesising the pseudo asset X(b)

We study the case where the hedge instrument X is not liquidly traded in the
market and a potential hedger must use other assets Y 1, ..., Y n to synthesize X. We
place ourselves in a diffusion setting, i.e. the prices X, Y 1, . . . , Y n are given by Itô
processes which are driven by a d-dimensional Brownian motion W defined on :

dXt = Xt{µ
X
t dt + σX

t dWt}

dY i
t = Y i

t {µ
i
tdt + σi

tdWt}

where µX , σX and µi, σi are suitably integrable stochastic processes. We assume the
prices X, Y 1, . . . , Y n are arbitrage-free. This implies that there is a “market price of
risk” process ϕ such that for any i ∈ {1, . . . , n}:

µX − σXϕ = µi − σiϕ.

Synthesizing X out of Y 1, . . . , Y n involves finding a self-financing strategy φ with a
position of φi in asset Y i for each i ∈ {1, . . . , n} such that X =

∑n

i=1 φiY i. The
following proposition characterizes these strategies φ.

Proposition B.1. Suppose that λ1, . . . , λn are predictable processes satisfying the
following two conditions:

(1)
n

∑

i=1

λi
t = 1 (2)

n
∑

i=1

λi
tσ

i
t = σX

t .

For each i ∈ {1, . . . , n}, we set φi := X
Y i λ

i. Then φ is a self-financing strategy which
identically duplicates X. In particular, any such strategy is of the form above.

Proof: Suppose that weights λ1, . . . , λn are given which satisfy conditions (1) and
(2) and that φ is the corresponding strategy. By condition (1), it is clear that
∑n

i=1 φiY i = X. By the no-arbitrage condition and because of (2) we have
n

∑

i=1

λiµi =
n

∑

i=1

λi{µX + ϕ(σi − σX)} = µX .

From this we see that φ is also self-financing because
n

∑

i=1

φi
tdY i

t = Xt

n
∑

i=1

λi
t{µ

i
tdt + σi

tdWt} = Xt{µ
Xdt + σX

t dWt} = dXt.

Conversely, if φ is a self-financing strategy which identically duplicates X, then the
weights λ1, . . . , λn determined by λi := Y i

X
φi will satisfy the two conditions.
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The weights λ1, . . . , λn are to be interpreted as portfolio weights, i.e. λi is the pro-
portion of total capital to be invested in asset Y i.

A question that arises naturally is whether a duplication strategy exists. Irrespective
of the concrete choice of X, this is only true if the market determined by Y 1, . . . , Y n

is dynamically complete. However, the proposition below deals with the concrete
application of how to synthesize the pseudo asset X of the insurance scenario (b),
i.e.

Proposition B.2. The asset X with price process

Xt = β̄ti+1,tN

D(t, tN)

D(t, ti+1)
c(t, ti, ti+1)

(

D(t, ti)1{t∈[t0,ti[} +
St

Sti

1{t∈[ti,ti+1]}

)

is a redundant asset in a market where the assets S and the zero coupon bonds
with the maturities ti, ti+1 and tN are traded, i.e. the duplication strategy φ =
(

φ(i), φ(i+1), φ(N), φ(S)
)

is given by

φ
(N)
t =

Xt

D(t, tN)
, φ

(i+1)
t =

−Xt

D(t, ti+1)
,

φ
(i)
t =

Xt

D(t, ti)
1{t∈{t0,ti}}, φ

(S)
t =

Xt

St

1{t∈{ti,ti+1}}.

In particular, the portfolio weights

λ =
(

1,−1, 1{t∈{t0,ti}}, 1{t∈{ti,ti+1}}

)

are independent of the volatility structure.

Proof: Let (X)M denote the martingale part of the Doob Meyer decomposition of
X.

d
(

X
(i)
t

)M

= β̄ti+1,tN c(t, ti, ti+1) d

[

D(t, tN)

D(t, ti+1)

(

D(t, ti)1{t∈[t0,ti[} +
St

Sti

1{t∈[ti,ti+1]}

)]M

= β̄ti+1,tN c(t, ti, ti+1)

[

(

D(t, ti)1{t∈[t0,ti[} +
St

Sti

1{t∈[ti,ti+1]}

)

d

(

D(t, tN)

D(t, ti+1)

)M

D(t, tN)

D(t, ti+1)

(

dD(t, ti)
M1{t∈[t0,ti[} + d

(

St

Sti

)M

1{t∈[ti,ti+1]}

)]

= X
(i)
t

[

σtN ,ti+1
(t) + σti(t)1{t∈[t0,ti[} + σS(t)1{t∈[ti,ti+1]}

]

.

The rest of the proof follows with Proposition B.1.
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